

2 CROSSTALK The Journal of Defense Software Engineering March 2008

4

8

13

18

24

3
12

30
31

D eD e p ap a rr t m e n t st m e n t s

From the Sponsor

Coming Events

SSTC 2008

BackTalk

NAVAIR’s Coast-to-Coast Support of the E-2C Hawkeye
Using Distributed TSP
This article discusses a Naval Air Systems Command distributed team that
became an example of how projects can work together remotely and be
successful.
by Linda Lou Crosby and Jeff Schwalb

Improving Consistency of Use Case Points Estimates
This article presents experimental data on the use of the Use Case Points
method to estimate development effort for a semester-scale software
product.
by Dr. David J. Coe

Good Practices for Developing User Requirements
This article provides a requirements model road map that helps software
development teams understand the effective use of requirements models.
by Ellen Gottesdiener

Tabular Notations for State Machine-Based Specifications
This article describes five approaches using tabular notations for state
machine-based specifications and evaluates these approaches for use
in software development.
by Markus Herrmannsdörfer, Dr. Sascha Konrad, and Brian Berenbach

Addressing the Challenges of Tactical Information
Management in Net-Centric Systems With DDS
This article presents an architectural overview of the Object Management
Group Data Distribution Service..
by Dr. Douglas C. Schmidt, Dr. Angelo Corsaro, and Hans Van’t Hag

The The BeginningBeginning

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

CrossTalk
CO-SPONSORS:

DOD-CIO

OSD (AT&L)

NAVAIR

76 SMXG

309 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Kristen Baldwin

Jeff Schwalb

Kevin Stamey

Norman LeClair

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); the
Office of the Secretary of Defense (OSD) Acquisition,
Technology and Logistics (AT&L); U.S. Navy (USN);
U.S. Air Force (USAF); and the U.S. Department of
Homeland Security (DHS). DoD-CIO co-sponsor:
Assistant Secretary of Defense (Networks and
Information Integration). OSD (AT&L) co-sponsor:
Software Engineering and System Assurance. USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); and
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division of the Office of
Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 17.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

March 2008 www.stsc.hill.af.mil 3

From the Sponsor

As the demand for software acquisition and development expertise continues to rise
in an environment of limited resources, we must ensure that programs engage

software expertise early in the system life cycle and that the program has tools and
processes in place that enable distributed teams to work effectively across geographic
boundaries. Best practices highlight the importance of taking the necessary planning in
The Beginning of a project to properly design a way to reach the desired outcome.

Acquisition of software-intensive systems in today’s rapidly evolving technological
environment is a challenging task. Consistency of processes for estimating scope, size, and com-
plexity of software is often lacking. Requirements are often unstable or incomplete and are not
adequately allocated down to the software domain, the results of which may include excessive
rework, cost, and schedule overruns, as well as poor quality products.

We know that up-front planning helps teams save money and deliver a better product to the
customer. Through various methods teams consistently use requirements to generate the tasks
necessary to create the product. This issue of CrossTalk focuses on ways to maximize the
conversion of project requirements to an effective task plan.

When you read Ellen Gottesdiener’s article Good Practices for Developing User Requirements, take
note of how she dissects an effective approach for defining user requirements. For a deeper
understanding of various methods of state machine-based design to perform software devel-
opment read Markus Herrmannsdörfer, Dr. Sascha Konrad, and Brian Berenbach’s Tabular
Notations for State Machine-based Specifications. Interoperability and secure data sharing in a real-time
operational environment are discussed in Dr. Douglas C. Schmidt, Dr. Angelo Corsaro and
Hans Van’t Hag’s article Addressing the Challenges of Tactical Information Management in Net-Centric
Systems With DDS. Learn how the technical process and people came together successfully on a
geographically distributed project in NAVAIR’s Coast to Coast Support of the E-2C Hawkeye Using
Distributed TSP by Linda Lou Crosby and Jeff Schwalb. Also included in this issue of
CrossTalk is experimental data gathered by Dr. David J. Coe and his University of Alabama
students leading to recommendations for improving the consistency of the estimation process
in Improving Consistency of Use Case Points Estimates.

As software assumes an ever-increasing role in the acquisition, development, and sustain-
ment of evolving capabilities within Department of Defense-fielded systems, the need for
robust up-front planning of software related activities, processes, best practices and events as an
integrated component of the overall system throughout the entire systems engineering life cycle
is vital to program success. The future holds great promise. With accelerating technology and
great planning we will have a skilled, trained, workforce that shares a common vision and oper-
ates in an integrated fashion to achieve a clear set of goals. Effective planning at the outset of
every project is crucial to meet the challenges of the future.

Planning for Software Acquisition, Development, and
Sustainment in a Complex Systems Environment

Joan Johnson
Naval Air Systems Command

4 CROSSTALK The Journal of Defense Software Engineering March 2008

The challenge facing the E-2C program
at Patuxent River in Maryland in 2003

was one of simply having more work than
the engineers could perform in the time
allotted. At the same time, engineers at
Point Mugu in California were working on
the F-14D delivering its final block release
to the fleet. When E-2C leadership discov-
ered the available pool of engineers at Point
Mugu, the question became one of how to
successfully combine these two groups of
engineers into one distributed team.

E-2C leadership at the time was aware
of the F-14A/B/D model aircraft sun set-
ting and the fact that many talented soft-
ware engineers were becoming available for
other work. The F-14 Integrated Product
Team at Point Mugu saw working with E-
2C as an opportunity to place their software
engineers into a team with a bright future.
F-14 leadership briefed the E-2C leadership
on the capabilities of these software engi-
neers as part of their effort to find a future
home for them. Their Team Software

ProcessSM (TSPSM) credentials were so
impressive that the E-2C program decided
it was worth the extra effort involved in
having virtual teams employed on their
upcoming software development projects.

Members from the two sites became
two integrated teams, one for the E-2C
Mission Computer (MC) and one for the
displays on board. The E-2C Leadership
asked the NAVAIR Process Improvement
(PI) enterprise team for an approach to
establish this virtual software engineering
team. They would start with TSP to estab-
lish a process engineering framework due
to its success with other NAVAIR projects
[1]. You will hear about three things in this
article: TSP and its ability to support multi-
ple, distributed teams, cultural change and
how people were supported as the distrib-
uted team started, as well as responses
about how this effort evolved and what
they think of it now as they still continue to
work together five years later.

TSP
To start, we will provide a quick review of

basic TSP followed by the extensions of the
multiple, distributed team version applied to
E-2C. The basic TSP is a software engineer-
ing process framework created by the
Software Engineering Institute (SEI) to help
a team plan its work and then work that plan
through collection of measures, regular com-
munications, and replanning at milestones
along the way to delivery of products [2].
The fundamentals are displayed in Figure 1.

The TSP starts by building a common
language between software engineers on a
team by training them in the Personal
Software ProcessSM (PSPSM) that they will each
use [3]. This training uses both lectures and
exercises so that engineers gain knowledge
and experience in the use of the process
scripts they will use, collection of basic mea-
sures used, and derivation of metrics from
those measures so that project plans and
actuals can be brought together to have
quantitative project status on a weekly basis.

The beginning of the real project work is
the launch [4]. It is a set of nine very struc-
tured and detailed planning meetings that
start by communicating with project stake-

NAVAIR’s Coast-to-Coast Support of the
E-2C Hawkeye Using Distributed TSP

Jeff Schwalb
NAVAIR Systems/Software Support Center Team

This article discusses the Naval Air Systems Command (NAVAIR) distributed team that became an example of how pro-
jects can work together remotely and be successful. This was accomplished through the use of common processes extended to
multiple, distributed teams, their coaches, and the tools used to automate those processes. The other vital area addressed was
the organizational cultures to be connected. This meant an important understanding of each other’s assumptions, values, and
styles needed to happen. This article is filled with observations and lessons learned from team members, team coaches, and
organizational facilitators on the multi-site virtual merging of NAVAIR E-2C Hawkeye software developers at Patuxent
River, MD with F-14D software developers at Point Mugu, CA.

The Beginning

E-2C Hawkeye – Navy’s all-weather, carrier-based tactical battle manage-
ment airborne early warning, command and control aircraft for the Carrier
Strike Group and Joint Force Commander.

F-14D Tomcat – United States Navy’s primary maritime air superiority
fighter, fleet defense interceptor and tactical reconnaissance platform from
1974 to 2006.

SM Team Software Process, Personal Software Process, TSP,
and PSP are service marks of Carnegie Mellon University.

Linda Lou Crosby
NAVAIR People, Process, Products, and Resources Team

NAVAIR’s Coast-to-Coast Support of the E-2C Hawkeye Using Distributed TSP

March 2008 www.stsc.hill.af.mil 5

holders to obtain needs, wants, and desires.
From this the team will proceed with identi-
fication of roles, goals, products, and ser-
vices. Then they proceed with the top-down
and bottom-up plans necessary to have each
member of the team own a balanced work-
load of tasks that allow two to four tasks to
be accomplished each week. This way, when
the team becomes operational after launch
each person is able to know if they are mak-
ing progress or if they need to shift tasks
with their teammates.

While Figure 1 shows a launch happen-
ing at requirements time, a project may actu-
ally start TSP anywhere in its life cycle based
upon the next opportune time to do so. For
example, if a project wishes to apply TSP for
the first time and is currently developing
requirements, then it will obtain the TSP
training sometime shortly before the high-
level design phase and then launch after
requirements are complete.

Another feature of TSP is planning an
entire project from top-down at the begin-
ning and then re-planning as milestones
along the way are reached. This is because
the level of detailed planning done in TSP
should not exceed three to six months due
to reasonable horizons of work being
done and the idea of working from mile-
stone to milestone. While Figure 1 shows a
simple waterflow model, a team may
instead choose other strategies where
example project cycles develop iteratively
functional versions of a project. A typical
multi-year project will go through several
cycles of bottom-up planning as it moves
from one milestone to the next.

Distributed Team
To recap, the E-2C program was doing two
things with TSP. It was using multiple project
teams to deliver its product and in virtual
teams that were distributed between Maryland
and California. Each project team is self-
coordinated, with each member acting in
one of several technical, support, or lead
roles that coordinates all these efforts. Each
of the E-2C project’s leads, planning coordi-
nators, and quality coordinators would come
together in key parts of a multi-team launch.
Planning coordinators came together before
and after top-down and bottom-up plan
meetings to check status and test any
assumptions. Quality managers meet after
the quality plans have been generated to do
the same. Also, at the end of each day of
launch the leadership team, consisting of
each project lead and the coaches, convene
to check status and discover any horizontal
issues that may affect each other.

Shown in Table 1 is recent data from the
E-2C distributed team plans. Teams were
constructed based upon expertise and inter-

est of engineers. The E-2C teams as shown
have a good handle on their plans and prod-
ucts. These teams effectively planned their
work every four to six months to the level of
granularity as described previously. These
launches were conducted with the smaller
portion of the team typically traveling to
allow the entire team to get together. This
face-to-face planning style was vital to main-
taining trust in the virtual team.

Operationally these teams know where
they are with ongoing weekly communica-
tions via teleconference. These teams chose
to break up their weekly communications.
The first is a TSP data-driven meeting to
track progress, as shown in Table 2 (see page
6). The other weekly teleconference meeting
is used to discuss technical issues. The key is
that these teams are planning their work and
then working those plans for constant
improvement.

Cultural Change
To address the culture change needed to join
the two teams, the NAVAIR Organizational
Development (OD) team would work the
people issues as the PI team focused on
processes. NAVAIR sites had traditionally
been perceived as competitors to each other;
this is a difficult barrier to break down as
many of our working systems still support
this perception. Also, the folklore within
each site includes stories of past competi-
tion. We needed new stories of successful
collaboration to replace the competition sto-
ries. This team saw the possibilities and we
built on that.

Part of the challenge in this effort was
the culture ingrained at each NAVAIR site. A
Software Support Activity (SSA) maintains
and delivers the software needed to bring
high tech capabilities to today’s advanced air-
craft. Without software, the aircraft would be

Post-mortem

Requirements

Launch

High-level
Design

Re-launch

Implementation

Re-launch

Integration
and Test

Re-launch

Training
- Leadership
- Engineers
- Support

Instructors
- TSP Executive Seminar

 - PSP for Engineers
- Personal Process

Coaches
 - Launch
 - Operational Support

Tools
- Automate Processes

Figure 1: TSP Approach of Training, Planning, and Operations

Team Members Planned Project
Project Pax Point Mugu Tasks Weeks Tasks/Eng/Week Date

Display A 8 2 365 27 1.35 Jan 2007
Display B 8 4 819 16 4.27 Apr 2007
Display C 8 4 780 16 4.06 Jul 2007
Display D 8 4 800 24 2.78 Oct 2007

Mission A' 4 12 1244 20 3.89 Sep 2006
Mission B' 4 12 1788 24 4.66 Jan 2007
Mission C' 4 12 1713 24 4.46 May 2007
Mission D' 4 12 1681 20 5.25 Nov 2007

Team
Members Project

Project
Type Pax

Point
Mugu Tasks Weeks

Tasks/
Eng/
Week

Cycle
Complete

Date

Hours
(planned/

actual)

Earned
Value

(planned/
actual)

A 8 4 780 16 4.06 12/2006 1.97 1.37

A 8 4 800 24 2.78 7/2007 0.95 1.22

B 4 12 1788 24 4.66 12/2006 1.13 1.18

B 4 12 1713 24 4.46 5/2007 1.12 1.06

A=Advanced Control Indicator Set B=MC

What’s happening outside the

Table 1: E-2C Distributed Project Teams

The Beginning

6 CROSSTALK The Journal of Defense Software Engineering March 2008

unable to deliver today’s precision weapons.
Traditionally, members of an SSA were co-
located because all had to be close to the sim-
ulation/test lab where they produced/modi-
fied the software and tested it. For example,
F/A-18 and AV-8B at China Lake, F-14D at
Point Mugu, E-2C at Patuxent River, MD,
and so forth. With the advances in technolo-
gy, the availability of high-speed communica-
tions lines has gone up and costs have low-
ered, allowing virtual teaming to become
much more common. If anything, it is now
the culture – norms, customs, traditions –
that seem to stand in the way of increasing
the use of virtual teams.

E-2C leadership announced from the
start that the teaming arrangement would not
be one of developer and subcontractor, but
rather a single integrated team – a true part-
nership. One benefit from this partnership is

increased resources. Pax needed more engi-
neers and Point Mugu needed more work.
Without that relationship, they would not
have been able to give the fleet all the want-
ed and needed functionality – the benefit
being that E-2C would generate more work
for itself and help the program grow. In the
end, the program thought it could be used as
an example to follow when considering a
successful multi-site team.

According to the OD team, the challenge
was pretty clear: NAVAIR has been produc-
ing software-intensive products for decades
so the knowledge for software exists with the
people all across the NAVAIR sites. Bringing
teams together, rather than hiring new people
into a site, is more efficient because the cost
of recruitment and training is not needed.
Instead, the investment is made in building a
team rather than in training in the software
domain. The people who came together on
this team already had the NAVAIR knowl-
edge and knew how to develop good quality
software. They just needed to learn how to
work together from across the country.

Team Building
Building the virtual teams was accomplished
with two initial events. The first was a three

day initial gathering in June 2003 designed to
start the building of a new common culture.
Its objectives were the following:
1. Get every team member to meet and

greet, get to know each other, and have
some fun.

2. Share history of each subgroup and
establish a vision of the future for this
newly formed team.

3. Establish team operating principles
and obtain team agreement on basic
operations.

4. Identify communications methods and
processes for initial team operations.
To meet these objectives, the first day

was conducted as a set of outdoor activi-
ties to get everyone to know each other
and have fun. Activities were conducted in
a park on base at Pax and included various
games such as the following:
• Celebration of success – developing

ways to do so.
• Reflection – what in your past will

contribute to success.
• Picture cards.
• Ah-So-Koh circle.
• Newspaper talk – sharing information.
• Climbing wall.
• Hula hoop lift.
• Reflection – personal plan, etc.

A=Advanced Control Indicator Set B=MC

What’s happening outside the
project?
Each role coordinator reports
Goals
Risks
Project status (plans vs. actuals)
Upcoming tasks and special events

Table 2: Weekly TSP Team Meeting Typical
Agenda

Project Location Comments

Mission
Computer

Point Mugu Team building was valuable: “Although some distrust levels were still around after the team building
event, the event lay the foundation for the groups to build a functional team to achieve the common
goals.”

Foreign
Military
Sales

Point Mugu Had his doubts initially but realized E-2C was serious: “…when I saw the effort going in at PAX to
provide the training, tools, and resources necessary to get the job done here at Point Mugu, I knew
management was really supporting this.”

Mission
Computer

Point Mugu Results were the key: “After successfully delivering many projects within schedule for the Version-5 fleet
release, I realized that the distributed approach was going to work. If people did not work together as a
team to solve problems, they simply could not achieve such results. Since it was the first project, working
together to deliver Version-5 was the most difficult. Several projects after that were flying smoothly.”

Display Pax Attributes team success to TSP. Has been a team member since March 2004, develops requirements
and detailed design documentation: “TSP provides organization and communications; as a developer,
you know exactly what is expected from you from the start of the project. Both managerial and team
expectation. In order to accomplish those objectives, you need to have strong communication within the
teams.”

Mission
Computer

Point Mugu Technology was an issue: “I think the biggest challenge was and is operating a classified network across
the country. Not so much because the technology is not there, but because of all the security hoops that
we have to go through to get our network approved.”

Leadership Pax Technology also helped: “Technology aided in allowing this team to work together. We were able to
establish a network across country, which allowed the use of a common data repository and common
processes to be used. For example, everyone at both sites used the same configuration management
system.”

Display Pax Had previous experience on a distributed team, and did not like it: “It was not well coordinated and I
always felt like we were the poor-stepchildren in the process.” This time the approach was completely
different: “There is high coordination and management attention to the issues involved technically in
making it work smoothly. I know that this time I am on the big side (East Coast) and so that may make
things different, but I think that there is much more sense that the West Coast folks are real team
members, not just hired help.”

Mission
Computer

Point Mugu Importance of communicating across the sites: “The biggest challenge was communication. Several
conference calls and meetings between the two sites took place. Several visits were made by team
management so they could know every team member and build the bridge between them. These efforts
definitely helped.”

1. Have a project plan. Everyone should know the mission and goals. Each

Table 3: Individual Feedback

NAVAIR’s Coast-to-Coast Support of the E-2C Hawkeye Using Distributed TSP

March 2008 www.stsc.hill.af.mil 7

The second and third day events were
conducted indoors with the goal of
increased understanding through historical
and present-day perspectives. Many of the
outcomes of the games and adventures of
the first day would be available for use in
this second and third day of team building.
Activities included the following:
• Team introductions.
• Team history.
• E2C lab tour.
• Myers-Briggs Type Indicator workshop.
• Strengths/weaknesses/opportunities/

constraints chart developed by the
team.

• Gap analysis determined, solutions pro-
posed, and actions assigned to team
members.

• Team members built joint vision for the
future.

• Team members drafted team agree-
ment, mission, and vision.
The second event was performed about

eight months into the projects in February
2004. A follow-up with E2-C project teams
was performed by conducting confidential
interviews at both sites. From topics that
emerged, a set of team-building topics
were presented to team leaders for possible
follow up. One of the most impressive dis-
coveries from the confidential interviews
was that communication between the two
sites and team members was going well – a
big plus!

Observations
While engineering process and cultural
change were important in making this E-2C
multi-distributed team get started, we were
most interested in the people themselves and
what they thought. With evolving require-
ments and launches accordingly, these pro-
jects still exist and operate in very much the
same distributed way as they started nearly
five years ago. While that says a lot, we want-
ed to know what real participants said (see
Table 3).

A member of one E-2C team did a good
job showing some of the fundamental places
where PI and cultural change (see Table 4)
took place. Individuals of a team located in
different places must know and trust each
other to plan their work and then track it. To
do so, historical data must be collected and
used for tracking and improved planning.

Conclusions
It is important to understand that real people
are the key to any technology improvement
being successful, especially when it is a dis-
tributed team. The important thing for read-
ers to realize is that their situation could
accomplish the same great success with the
buy-in of people from their organization.

The immediate result was the F-14D
engineers were given a new lease on life,
while E-2C welcomed some incredibly well-
versed and knowledgeable people into their
program. Long-term results (continued
excellence in delivering software products to
the Fleet) show that people with similar train-
ing and skills can move laterally in an organi-
zation and continue to make a solid contri-
bution. Finally, the overall experience shows
that two separate organizations must remem-
ber the importance of considering cultural
factors when bringing teams together.

As for the future, it is full speed ahead,
and more of the same for the E-2C multi-site
team. With initial concerns a thing of the
past, the E-2C team can fully focus on the
Hawkeye mission. E-2C is right on target and
they set a great example for others to follow

in proving that miles don’t matter when it
comes to having a successful Integrated
Product Team.u

References
1. Wall, Daniel S. “Case Study: Accel-

erating Process Improvement by Inte-
grating the TSP and CMMI.”
Pittsburgh, PA: SEI, 2007.

2. Humphrey, Watts S. “TSP: Coaching
Development Teams.” Addison-Wes-
ley, 2006.

3. Humphrey, Watts S. “PSP: A Self
Improvement Process for Software
Engineers.” Addison-Wesley, 2005.

4. Humphrey, Watts S. “TSP: Coaching
Development Teams, Part II Launch-
ing a TSP Team.” Addison-Wesley,
2006.

management so they could know every team member and build the bridge between them. Thes
definitely helped.”

1. Have a project plan. Everyone should know the mission and goals. Each
member should know who is responsible for what and when.

2. Learn about available resources from each other. How many developers are
available and what skills or talents does each individual have? What equipment
and tools are there for development and testing?

3. Communicate with each other and communicate often. Plan weekly
meetings, plan face-to-face meetings, e-mail, and call often.

4. Trust each other. Team members should respect and understand each other.
5. Share information. Team members should share what they know and what

they learn with everyone else.
6. Work to your plan and goals.

1. Table 4: Six Factors That Produce Success for a Multi-Site Team

About the Authors

Linda Lou Crosby has
chronicled software pro-
cess and organizational
improvement at NAVAIR
since 1999. Previously,
she produced and report-

ed for KCET Public Television in Los
Angeles (including an Emmy nomina-
tion), wrote an award-winning column,
and has created award-winning videos
for the U.S. Navy. Crosby is presently
working with the Center for Risk
Communication and the People,
Process, Products, and Resources team
at NAVAIR.

NAVAIR
People, Process, Products,
and Resources
Code 41E000D
1900 N Knox RD
BLDG 1494 MS 6308
China Lake, CA 93555-6106
Phone: (760) 377-5001
E-mail: Ll_neon@iwvisp.com

Jeff Schwalb is employ-
ed by NAVAIR at China
Lake, California. Cur-
rently, he works in an
enterprise team that
helps provide continuous

process improvement support across
NAVAIR. Schwalb has taught each of
the TSP/PSP courses many times and
has been involved in the TSP launch of
several projects across NAVAIR. He is
now working with SEI to extend TSP
practices into other domains. Schwalb
received his bachelor of science degree
in computer science from California
State University, Chico in 1986.

NAVAIR
Systems/Software Support Center
Code 414300D
1900 N Knox RD
BLDG 1494 MS 6308
China Lake, CA 93555-6106
Phone: (760) 939-6226
E-mail: jeff.schwalb@navy.mil

Use cases are a common technique for
documenting software requirements.

A use case is often defined as a step-by-step
description of the interaction between the
software and one or more actors (the peo-
ple or other systems that utilize the soft-
ware product to complete a given task). A
use case model of a software product is
thus the set of all use cases that describe
the product’s desired functionality. Well-
written use cases concisely summarize
product functionality in a way that is easy
for customers to understand. They may
also provide early insight on project com-
plexities and give software developers a
starting point from which to estimate total
development effort. The UCP estimation
method was proposed by Gustav Karner
as a way of estimating resources for pro-
jects developed using the Objectory
methodology (which later evolved into the
Unified Process) [1-2].

The UCP method takes into account
the complexities of the use cases them-
selves and the complexities of the users
(or actors) that will interact with the soft-
ware product. A weighted equation based
upon the number of steps in each use case
and the complexities of the actors deter-
mines an initial UCP estimate. This initial
estimate is then scaled by a technical fac-
tor, to adjust the estimate by the product’s
perceived technical challenges, and by an
environmental factor, to adjust the esti-
mate for people-related factors such as
skill levels, experience, motivation, etc.
The scaled UCP estimate may then be
used to estimate development effort by
multiplying it by an experimentally derived
Productivity Factor (PF). The mechanics
of the UCP calculation resemble that of
Albrecht’s Function Point method from
which this method was derived [2-3].

Students in an introductory software
engineering course were required to use
Karner’s UCP method to estimate the
overall effort required to implement a sim-
ple hotel reservation system. An overview
of the team project is presented, followed
by a step-by-step review of the UCP

method. The PFs achieved by the student
teams are determined using the UCP esti-
mates and time sheet data, and sources of
discrepancies in the estimates are ana-
lyzed. Finally, the lessons learned from
this experience are summarized.

Team Project Requirements
Six, four-person student teams were each
given one semester to implement a sim-
plified hotel reservation system in C++
using a common set of initial require-
ments. The hotel reservation system was
to allow hotel employees to make reser-
vations for customers and to generate
reports that summarized the current state
of the hotel’s room reservations. The
base rate charged for each hotel room
would be set in advance and could be
changed to reflect variations in demand
throughout the year. The actual rate
charged, however, could vary depending
upon which of the four types of reserva-
tions (prepaid, advance, conventional, or
incentive) was selected. The reservation
system also had to apply specified penal-
ties for no-show guests. At check out,
guests were to receive a bill that summa-
rized the details of their reservation and
the total charges.

The reservation system was also
required to maintain records of all trans-
actions, including reservation changes
and cancellations, and archive those
records to disk. Finally, employees were
to have the option of generating one of
the five types of reports that summarized
various aspects of hotel operation,
including lists of expected arrivals and
current occupancy lists. Additional details
on the hotel reservation system project
may be found in Appendix A of [3].

Teams were required to practice
object-oriented analysis and design tech-
niques learned in the course. Given the
time constraints of the semester, a graph-
ical user interface for the reservation sys-
tem was optional. All teams were
required to follow an iterative and incre-
mental development process based upon

the five core disciplines of the Unified
Process (requirements, analysis, design,
implementation, and test). During the
project, teams were required to generate
and refine seven different deliverables as
follows:
• Software Project Management Plan.
• Use Case Model.
• Unified Modeling Language (UML)

Class Diagrams.
• UML Sequence Diagrams.
• Test and Integration Plan.
• C++ Source Code and Makefile.
• User Manual.

Five intermediate milestones were
established to encourage teams to start
the project early and avoid the last minute
heroic efforts at the end of the semester.
At each milestone, teams were also
required to submit timesheets that sum-
marized the total time spent by each team
member on the submitted artifacts at that
milestone. This data on actual effort
would later be used to compute the PF
for each team.

I first came across the UCP estima-
tion method in [2] as the teams were
nearing completion of their Use Case
models. Since my previous software esti-
mation experience utilized line-of-code
(LOC) based methods, I added a UCP
estimate requirement to the team project
to see how well this estimation technique
would work, especially since all six teams
would be producing estimates for the
same product. Students were asked to use
their existing use case model, as is, when
completing the UCP estimate.

Brief Review of the UCP
Method
This overview of the UCP estimation
method is derived from [1, 2]. Included in
the discussion is an example UCP calcula-
tion, utilizing values reported by one of
the student teams. Following this review
of the UCP method, the estimates pre-
pared by the six student teams are pre-
sented and analyzed.

Improving Consistency of Use Case Points Estimates

Use cases document key product functionality and have been used as the basis for estimating software product development
efforts. Presented here is experimental data on the use of the Use Case Points (UCP) method to estimate development effort
for a semester-scale software product. From a common set of initial requirements, six student teams refined these requirements
and produced independent effort estimates from their own use case models. The sources of estimation inconsistency are exam-
ined and recommendations for improving the consistency of the estimation process are presented.

Dr. David J. Coe
University of Alabama, Huntsville

8 CROSSTALK The Journal of Defense Software Engineering March 2008

March 2008 www.stsc.hill.af.mil 9

Step 1: Unadjusted Use Case Weight
Starting with the use case model, the first
step in the UCP estimation method is to
calculate the Unadjusted Use Case Weight
(UUCW), which is a weighted sum of the
total number of steps identified in all of
the use cases. The use cases are sorted
into three different categories (Simple,
Average, or Complex) depending upon
the number of steps (or transactions)
identified or the perceived complexity of
implementation (estimated number of
objects required). Table 1 describes the
use case category criteria.

Consider the data reported by Team
A. Team A identified a total of 14 use
cases for the team project. Seven of these
use cases were determined to be Simple in
that the use cases consist of three or
fewer transactions, and seven were con-
sidered to be Average in that they consist-
ed of four to seven transactions. Team A
identified no Complex use cases. Thus, the
weighted sum UUCW for Team A is com-
puted as follows:

Team A UUCW = 7 * 5 + 7 * 10 + 0 *
15 = 105

Step 2: Unadjusted Actor Weight
As with the use cases, the actors are also
categorized by their perceived complexity
(Simple, Average, or Complex). The
Unadjusted Actor Weight (UAW) is a
weighted sum of all actors appearing in
the use case model. Table 2 summarizes
the actor category criteria and category
weights. Team A reported a single
Complex actor in their use case model
and no Simple or Average actors. The
weighted sum UAW for Team A is calcu-
lated as follows:

Team A UAW = 0 * 1 + 0 * 2 + 1 *
3 = 3

Step 3: Unadjusted UCP
The Unadjusted UCP (UUCP) is comput-
ed as the sum of the UUCW and the
UAW. For Team A, the UUCP is comput-
ed as follows:

Team A UUCP = UUCW + UAW =
105 + 3 = 108

Step 4:Technical Complexity Factor
The Technical Complexity Factor (TCF)
is used to adjust the UCP estimate based
upon the perceived technical complexities
of the project. The influences of 13 tech-
nical factors on the development effort
are estimated using a scale from 0 (irrele-
vant) to 5 (essential) with the value 3 used
if the factor’s influence is unknown. The

technical factors and their relative weights
are described in Table 3. For each techni-
cal factor, the influence estimate is multi-
plied by the corresponding factor weight
and summed across all thirteen factors to
compute the Technical Total Factor

(TTF). The TCF is computed from the
TTF as follows:

TCF = 0.60 + 0.01 * TTF

Using Team A’s influence estimates as

Category DescriptionUse Case
Category

Transactions T per
Use Case

Objects Required for
Implementation R

Category
Weight

Simple T < 4 R < 5 5
Average 4 T 7 5 R 10 10
Complex T > 7 R > 10 15

Actor
Category

Category Description Category
Weight

Simple Actor represents another system interacting through a defined
application programming interface

1

Average An actor which represents interaction with another system via
a protocol or human interaction through a text interface

2

Complex An actor which interacts through a graphical user interface 3

Technical
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

T1 Distributed systems 2 0
T2 Response time or throughput performance 1 4
T3 End user efficiency 1 3
T4 Complex internal processing 1 2
T5 Reusability of code in other applications 1 0
T6 Ease of installation 0.5 4
T7 Ease of use 0.5 4
T8 Portability 2 0
T9 Changeability 1 3
T10 Concurrency 1 0
T11 Special security features 1 0
T12 Provide direct access for third parties 1 0
T13 Special user training facilities 1 2

Environmental
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

E1 Familiarity with Unified Process* 1.5 1
E2 Part time workers -1 4
E3 Analyst capability 0.5 1
E4 Application experience 0.5 1
E5 Object-oriented experience 1 3
E6 Motivation 1 4
E7 Difficult programming language -1 0
E8 Stable requirements 2 3

*changed from original term Objectory

Table 1: Use Cases Complexity Categories and Weights [1-2]
Category DescriptionUse Case

Category
Transactions T per

Use Case
Objects Required for
Implementation R

Category
Weight

Simple T < 4 R < 5 5
Average 4 T 7 5 R 10 10
Complex T > 7 R > 10 15

Actor
Category

Category Description Category
Weight

Simple Actor represents another system interacting through a defined
application programming interface

1

Average An actor which represents interaction with another system via
a protocol or human interaction through a text interface

2

Complex An actor which interacts through a graphical user interface 3

Technical
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

T1 Distributed systems 2 0
T2 Response time or throughput performance 1 4
T3 End user efficiency 1 3
T4 Complex internal processing 1 2
T5 Reusability of code in other applications 1 0
T6 Ease of installation 0.5 4
T7 Ease of use 0.5 4
T8 Portability 2 0
T9 Changeability 1 3
T10 Concurrency 1 0
T11 Special security features 1 0
T12 Provide direct access for third parties 1 0
T13 Special user training facilities 1 2

Environmental
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

E1 Familiarity with Unified Process* 1.5 1
E2 Part time workers -1 4
E3 Analyst capability 0.5 1
E4 Application experience 0.5 1
E5 Object-oriented experience 1 3
E6 Motivation 1 4
E7 Difficult programming language -1 0
E8 Stable requirements 2 3

*changed from original term Objectory

Table 4: Environmental factors that influence complexity as described in [1-2] along with their rela-
tive weights. Also included are influence estimates of each factor made by Team A. Influence estimates
range from 00 (irrelevant) to 55 (essential).

Category DescriptionUse Case
Category

Transactions T per
Use Case

Objects Required for
Implementation R

Category
Weight

Simple T < 4 R < 5 5
Average 4 T 7 5 R 10 10
Complex T > 7 R > 10 15

Actor
Category

Category Description Category
Weight

Simple Actor represents another system interacting through a defined
application programming interface

1

Average An actor which represents interaction with another system via
a protocol or human interaction through a text interface

2

Complex An actor which interacts through a graphical user interface 3

Technical
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

T1 Distributed systems 2 0
T2 Response time or throughput performance 1 4
T3 End user efficiency 1 3
T4 Complex internal processing 1 2
T5 Reusability of code in other applications 1 0
T6 Ease of installation 0.5 4
T7 Ease of use 0.5 4
T8 Portability 2 0
T9 Changeability 1 3
T10 Concurrency 1 0
T11 Special security features 1 0
T12 Provide direct access for third parties 1 0
T13 Special user training facilities 1 2

Environmental
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

E1 Familiarity with Unified Process* 1.5 1
E2 Part time workers -1 4
E3 Analyst capability 0.5 1
E4 Application experience 0.5 1
E5 Object-oriented experience 1 3
E6 Motivation 1 4
E7 Difficult programming language -1 0
E8 Stable requirements 2 3

*changed from original term Objectory

Table 3: Technical factors that influence complexity as described in [1, 2] along with their relative
weights. Also included are influence estimates of each factor made by Team A. Influence estimates
range from 00 (irrelevant) to 55 (essential).

Category DescriptionUse Case
Category

Transactions T per
Use Case

Objects Required for
Implementation R

Category
Weight

Simple T < 4 R < 5 5
Average 4 T 7 5 R 10 10
Complex T > 7 R > 10 15

Actor
Category

Category Description Category
Weight

Simple Actor represents another system interacting through a defined
application programming interface

1

Average An actor which represents interaction with another system via
a protocol or human interaction through a text interface

2

Complex An actor which interacts through a graphical user interface 3

Technical
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

T1 Distributed systems 2 0
T2 Response time or throughput performance 1 4
T3 End user efficiency 1 3
T4 Complex internal processing 1 2
T5 Reusability of code in other applications 1 0
T6 Ease of installation 0.5 4
T7 Ease of use 0.5 4
T8 Portability 2 0
T9 Changeability 1 3
T10 Concurrency 1 0
T11 Special security features 1 0
T12 Provide direct access for third parties 1 0
T13 Special user training facilities 1 2

Environmental
Factor

Factor Description Factor
Weight

Team A
Influence
Estimates

E1 Familiarity with Unified Process* 1.5 1
E2 Part time workers -1 4
E3 Analyst capability 0.5 1
E4 Application experience 0.5 1
E5 Object-oriented experience 1 3
E6 Motivation 1 4
E7 Difficult programming language -1 0
E8 Stable requirements 2 3

*changed from original term Objectory

Table 2: Actor Complexity Categories and Weights [1-2]

Improving Consistency of Use Case Points Estimates

shown in Table 3, Team A computed a
TTF of 18 resulting in a 0.78 TCF.

Step 5: Environmental Complexity
Factor
The Environmental Complexity Factor
(ECF) is used to adjust the estimate for
people-related factors such as skill levels,
experience, motivation, etc. The influ-
ences of eight environmental factors on
the development effort are estimated
using a scale from 0 (irrelevant) to 5
(essential) with the value 3 used if the
factor’s influence is unknown. Table 4
(see previous page) lists the UCP envi-
ronmental factors, their relative weights,
and their estimated impact according to
Team A. For each environmental factor,
the influence estimate is multiplied by the
corresponding factor weight and
summed across all eight factors to com-
pute the Environmental Total Factor
(ETF). The ECF is computed from the
ETF using the following equation:

ECF = 1.4 - 0.03 * ETF

Using Team A’s influence estimates as
shown in Table 4, Team A computed an
ETF of 11.5 resulting in a 1.06
Environmental Complexity Factor.

Step 6: Compute UCPs and
Estimated Labor
The UCP estimate for the product is com-
puted as the product of the initial unad-
justed use case points, the TCF, and the
ECF. For Team A, the UCP computation
is summarized next:

Team A UCP = UUCP * TCF * ECF =
108 * 0.78 * 1.06 = 89

The Estimated Labor is the product of
the UCP estimate and an experimentally
determined PF. For the three products
presented by Karner in [1], the PF was

experimentally determined to be in the
range of 20-30 person-hours per use case
point as shown in Table 5. Fitting a
straight line to this data, Karner comput-
ed a nominal productivity of 20 person-
hours per use case point.

In practice, there are a number of dif-
ferent methods that one might use to
determine a PF. One could use UCP PFs
documented in the software engineering
literature. These values, however, may not
produce an accurate estimate since they do
not necessarily reflect the types of systems
you are developing, the programming lan-
guages or development tools that you will
be using, etc. Another approach would be
to utilize your own organization’s project
metrics to calculate a PF. An advantage of
this approach is that these metrics would
account for your particular organization’s
software development process. Another
advantage is that you could selectively
include metrics from relevant projects
only.

Having no experimental data on stu-
dent teams using this method for a semes-
ter-sized student project, students were
asked to complete their estimates using
the nominal value of 20 person-hours per
use case point to demonstrate that they
understood the mechanics of the calcula-
tion. Students were warned that this would
likely result in an overestimate of the actu-
al labor required on the assigned project
since Karner’s nominal productivity was
derived from data collected from larger
commercial products. I planned to use this
first classroom experience with UCP esti-
mation to gather metrics that I might use
to compute a more realistic PF for subse-
quent classroom use. My goal was that
each student would need to average at
minimum five hours per person per week
to satisfactorily complete the team soft-
ware project. Assuming four students per
team working 12 weeks at five hours per
person per week, my nominal labor goal

was 240 hours total per team. The calen-
dar spacing of the milestones was intend-
ed to force the students to distribute this
labor uniformly across the span of the
project.

Student UCP Estimates
The UCP estimates prepared by the stu-
dent teams are summarized in Table 6
along with reported labor hours required
to complete the project. Even though all
teams were estimating the same project
starting with the same initial list of
requirements, a wide range of UCP esti-
mates were produced with the largest esti-
mate of 275 UCPs being approximately
five times larger than the smallest estimate
of 56 UCPs. Reported effort also varied
over a wide range from a low of 170 hours
to a high of 384 hours. Calculated pro-
ductivities ranged from 0.62 to 3.89 hours
per use case point, which is significantly
lower than Karner’s nominal value. To
determine the source of the discrepancies,
we examine the intermediate calculations
below.

Analysis of Estimate
Discrepancies
Table 7 summarizes the intermediate UCP
calculations for all six teams. The subse-
quent discrepancy analysis examines the
UCP calculations and identifies factors
that contributed to the observed varia-
tions across the student teams.
Recommendations for improving the con-
sistency and quality of the estimates are
also presented.

UUCW Calculations
The majority of teams identified between
nine and 14 distinct use cases though
Team B and Team D identified 18 and 32
use cases respectively. The primary source
of discrepancy in the number of use cases
identified was the consolidation or expan-
sion of related use cases, that is, a use case
with multiple scenarios may have been
split and counted as multiple distinct uses
cases. An example of this would be the
Reserve Room use case where each of the
four types of room reservations is treated
as a separate use case. Splitting of such a
use case could inflate the UUCW if the
complexity of the resulting use cases did
not decrease. Team D’s estimate is an

The Beginning

10 CROSSTALK The Journal of Defense Software Engineering March 2008

Project Number of Actors
(complexity)

Number of Use Cases
(complexity)

TCF ECF UCPs Person-Hours
Required

PF
(Hours per UCP)

A 5 (average) 10 (average) 1.00 0.975 107.25 2150 20.05
B 5 (average) 50 (average) 1.00 1.175 599.25 12500 20.86
C 5 (average) 15 (average) 1.00 1.175 188.00 5400 28.72

Student TeamsStudent Team
Project Data A B C D E F

Mean All
Teams

UCP Estimates 89 74 56 275 53 123 111.6
Reported Effort (hours) 297 262 216 170 171 384 249.7
Actual PF
(hours/UCP)

3.34 3.52 3.89 0.62 3.22 3.12 2.95

Student Team EstimatesMetric

A B C D E F

Mean All
Teams

Total Use Cases 14 18 12 32 9 14 16.5
UUCW 105 120 70 310 90 160 142.5
Total Actors 1 2 3 10 9 14 6.5
UAW 3 6 6 18 18 28 13.17
TCF 0.78 0.71 0.80 0.87 0.72 0.87 0.79
ECF 1.06 0.83 0.92 0.97 0.68 0.76 0.87

Table 5: Project Metrics Used by Karner to Determine PF [1]

Number of Actors
(complexity)

Number of Use Cases
(complexity)

TCF ECF UCPs Person-Hours
Required

PF
(Hours per UCP)

5 (average) 10 (average) 1.00 0.975 107.25 2150 20.05
5 (average) 50 (average) 1.00 1.175 599.25 12500 20.86
5 (average) 15 (average) 1.00 1.175 188.00 5400 28.72

Student TeamsStudent Team
Project Data A B C D E F

Mean All
Teams

UCP Estimates 89 74 56 275 53 123 111.6
Reported Effort (hours) 297 262 216 170 171 384 249.7
Actual PF
(hours/UCP)

3.34 3.52 3.89 0.62 3.22 3.12 2.95

Student Team EstimatesMetric

A B C D E F

Mean All
Teams

Total Use Cases 14 18 12 32 9 14 16.5
UUCW 105 120 70 310 90 160 142.5
Total Actors 1 2 3 10 9 14 6.5
UAW 3 6 6 18 18 28 13.17
TCF 0.78 0.71 0.80 0.87 0.72 0.87 0.79
ECF 1.06 0.83 0.92 0.97 0.68 0.76 0.87

Table 6: Summary of Team UCP Estimates, Reported Effort, and PF

Improving Consistency of Use Case Points Estimates

March 2008 www.stsc.hill.af.mil 11

extreme example of this situation.
Another source of UUCW discrepan-

cy is in the number of actor-product inter-
actions identified. Some teams described
additional interactions for a given use case
than did other teams due to either an alter-
nate interpretation of the initial project
requirements or feature creep, the incor-
poration of extra features by the develop-
ers. For example, one team included a user
authentication interchange with every use
case. Other teams included confirmation
interchanges to verify user inputs. In other
instances, a team would split an interac-
tion into multiple interchanges. For exam-
ple, the hotel manager should be able to
set the base room rate on a given date.
Some teams documented the two inputs,
base rate and date, as a single use case step
while other teams split the input of the
two values into multiple steps.

It was also clear that on some teams,
no effort was made to make the level of
use case detail included uniform across the
entire use case model. Instead, use cases
were assigned to individual team members
and prepared as individual assignments
with little or no peer review. Since the
UUCW is a measure of the number of
steps or interactions between an actor and
the system, additional interactions can
result in a given use case being classified as
more complex during the UCP estimation
process, inflating the UUCW.

The first step in determining a reason-
able UUCW estimate must be communica-
tion with the customer. The use case model
documents the developer’s vision of the
product’s functionality, yet I, acting as the
customer, received surprisingly few ques-
tions from the students regarding clarifica-
tion of specific project requirements.
Students developed their products in a
vacuum, by choice, and as a result the
teams were not really estimating the exact
same product due to their respective inter-
pretations of the initial requirements and
occasional addition of nice-to-have features
that were not explicitly required.

A use case preparation standard could also
improve the UUCW estimation proce-
dure. Such a standard should include spe-
cific criteria for combining or splitting of
use cases for estimation purposes.
Examples must be included in the stan-
dard to illustrate the desired level of detail
to include in the model for estimation pur-
poses. This level of detail is likely to vary
with the scope of the product under con-
sideration and is an area of research that I
am currently pursuing.

One should also perform a reality check on
the initial UUCW estimate derived from the
use case model. Karner’s UCP method

allows you to determine the complexity of
a use case from its text description, but as
shown in Table 1, he also specified for
each complexity category the number of
objects required for implementation [1].
As a reality check, one can revisit the ini-
tial complexity assessment of each use
case by examining the number of objects
required in its implementation. If the two
assessments disagree, you will have to
make some decisions as to how to pro-
ceed. The brief summary of Karner’s esti-
mation technique presented in [1] pro-

vides no guidance on how to deal with this
discrepancy. One approach would be to
complete the calculation under the worst-
case assumption, always sorting use cases
into the most complex category identified
by either of the two methods. One could
also average the complexity weights indi-
cated for those use cases in which the two
methods produced different complexity
assessments. You could also compare your
UUCW estimate to that for any similar
products developed by your organization
to see if it seems reasonable.

UAW Calculations
Two types of errors were observed in the
student UAW calculations: incorrect identi-
fication of the set of actors, and duplicate
counting of actors in the calculation. In my
view, the system had two actors, a hotel
employee and a hotel manager, who direct-
ly interacted with the reservation system,
and a Guest, who interacted indirectly with
the system via the hotel employee or man-
ager. Team B argued that the guest could be
omitted for estimation purposes since the
guest did not directly interact with the
reservation system. Team C included all
three actors in their estimate. Team A iden-
tified a single actor but classified that actor
as complex since they implemented a
graphical user interface. While inexperience
at use case modeling contributed to these
discrepancies, additional guidance was
needed on the inclusion or exclusion of
indirect actors in the estimate. Teams D-F,
however, counted the same actor multiple
times for each use case in which that actor
was involved, inflating their resulting UAW.
Several commercial and freeware UCP esti-
mation software tools have reduced the
possibility of this particular error by the
way their developers have chosen to guide
users through the UCP estimation process.

TCF and ECF Calculations
Both the TCF and ECF calculations evalu-
ate to approximately 1.0 if the influence of
all of their corresponding factors are
unknown. Recall that the influence values
are integers that range from 0 (irrelevant)
to 5 (essential) with an influence value of 3
used to indicate that the impact of a par-
ticular technical or environmental factor is
unknown. Some students felt it was easiest
to rate a product for a particular factor if it
happened to fall at one of the extremes,
irrelevant, essential, or unknown, but they
expressed a need for some criteria to dif-
ferentiate the intermediate influence levels.

Fortunately, the TCF proved to be rel-
atively insensitive to variations on the per-
ceived impact of a single technical factor
since the weights associated with each fac-
tor are small. The computed TCFs were
all within 0.08 of the overall mean value
0.79. Some variation in ECF is to be

Project Number of Actors
(complexity)

Number of Use Cases
(complexity)

TCF ECF UCPs Person-Hours
Required

PF
(Hours per UCP)

A 5 (average) 10 (average) 1.00 0.975 107.25 2150 20.05
B 5 (average) 50 (average) 1.00 1.175 599.25 12500 20.86
C 5 (average) 15 (average) 1.00 1.175 188.00 5400 28.72

Student TeamsStudent Team
Project Data A B C D E F

Mean All
Teams

UCP Estimates 89 74 56 275 53 123 111.6
Reported Effort (hours) 297 262 216 170 171 384 249.7
Actual PF
(hours/UCP)

3.34 3.52 3.89 0.62 3.22 3.12 2.95

Student Team EstimatesMetric

A B C D E F

Mean All
Teams

Total Use Cases 14 18 12 32 9 14 16.5
UUCW 105 120 70 310 90 160 142.5
Total Actors 1 2 3 10 9 14 6.5
UAW 3 6 6 18 18 28 13.17
TCF 0.78 0.71 0.80 0.87 0.72 0.87 0.79
ECF 1.06 0.83 0.92 0.97 0.68 0.76 0.87

Table 7: Summary of Supporting UCP Estimate Calculations

“Some students felt it
was easiest to rate a

product for a particular
factor if it happened to

fall at one of the
extremes, irrelevant,

essential, or unknown,
but they expressed a

need for some criteria to
differentiate the

intermediate influence
levels.”

expected since the ECF gauges people-
related factors such as object-oriented
development experience, application
domain experience, motivation, etc.

PF Calculations
The average productivity, excluding Team
D, was approximately 3.5 hours per use
case point, which was significantly lower
than Karner’s nominal value of 20 hours
per use case point. Karner’s nominal value
was determined from real-world products,
which are likely to be significantly larger
and more robust than those developed by
the student teams (see reported labor in
Table 5). Given the time constraints of the
semester, the student products are essen-
tially prototypes that lack adequate error
handling, and in some cases, omit function-
ality identified in their use case model.

It is also important to remember that
these PFs are derived from the labor hours
reported by the student teams. Inaccurate
reporting of labor hours on student pro-
jects does occur. In some cases, students
forget to record their hours for the week
and report an estimated labor value for that
week. Students may also choose to inflate
their reported hours in hopes of achieving
a better grade on the assignment.

Mathematical Errors
While the mathematical computations
required by the UCP estimation method
are not conceptually difficult, errors did
occur. The best way to minimize such
errors is to provide a software tool that imple-
ments the UCP calculations correctly.
While a spreadsheet estimation template
would suffice, a dedicated UCP estimation
tool that interfaced with your modeling
tool would help prevent errors in execu-
tion of the estimation method itself, such
as duplicate counting of actors in the
UAW calculation, in addition to preventing
the purely numeric errors.

Conclusions
The student team estimation data illustrates
both the potential of the UCPs estimation
method and some of the pitfalls that can be
avoided. Excluding Teams D-F due to cal-
culation errors, team productivity averaged
approximately 3.5 hours per use case point
on this semester-sized, four-person project.
While this was significantly lower than that
reported by Karner [1], the time constraints
of the semester prevent the students from
developing product-quality code.

Since the PF is determined experimen-
tally, it is important to have a consistent
method of producing a use case points esti-
mate. The consistency of the presented
estimates could have been improved by bet-

ter communication with the customer, to prevent
inclusion of unnecessary features, and by
the use of a use case preparation standard. Such
a standard must address the level of detail
to be included in the description of each
use case and include specific criteria for
splitting or combining use cases.
Commercial UCP software tools also help to
prevent errors by automating many of the
UCP calculations. One must also perform a
reality check on any UCP estimate, using
either the required objects count of the
UCP method, a best-case/worst-case analy-
sis, or your own historical data, to deter-
mine if the method has produced a reason-
able estimate. Finally, one must keep in
mind that the UCP estimation method is
the focus of ongoing research worldwide
so your estimation procedures should be
reviewed periodically to incorporate the lat-
est lessons learned.u

References
1. Karner, Gustav. “Resource Estimation

for Objectory Projects.” Objective
Systems SF AB, September 17, 1993.

2. Clemmons, Roy K. “Project Estima-
tion With Use Case Points.” Cross-
Talk Feb. 2006.

3. Schach, Steven R. Object-Oriented &
Classical Software Engineering. 6th
ed. Boston: McGraw Hill, 2005.

The Beginning

12 CROSSTALK The Journal of Defense Software Engineering March 2008

About the Author

David J. Coe, Ph.D., is
an assistant professor in
the Department of Elec-
trical and Computer En-
gineering at the Univer-
sity of Alabama in

Huntsville. He currently teaches under-
graduate and graduate courses in C++
programming, data structures, and soft-
ware engineering, and he has consulted
locally in the areas of software engineer-
ing and software process. Coe has an
undergraduate degree in computer sci-
ence from Duke University, a masters of
science in electrical engineering, and a
doctorate in electrical engineering from
the Georgia Institute of Technology.

The University of
Alabama, Huntsville
Department of Electrical and
Computer Engineering
217-F Engineering BLDG
Huntsville,AL 35899
Phone: (256) 824-3583
E-mail: coe@ece.uah.edu

COMING EVENTS

April 1-3
FOSE 2008

Washington, D.C.
www.fose.com

April 7-11
RSA Conference 2008

San Francisco, CA
www.rsaconference.com/2008/US/

home.aspx

April 14-18
DoD Enterprise Architecture

Orlando, FL
www.afei.org/brochure/8a05/

index.cfm

April 15-17
MRO Military 2008 Conference

and Exhibition
Fort Lauderdale, FL

www.aviationweek.com
conferences/milmain.htm

April 15-17
Software Test and Performance Conference

San Mateo, CA
www.stpcon.com

April 28-May 1
SATURN 2008
Pittsburgh, PA

www.sei.cmu.edu/architecture/
saturn/2008

April 29-May 2

2008 Systems and Software
Technology Conference

Las Vegas, NV
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

March 2008 www.stsc.hill.af.mil 13

Many software developers have a love-
hate relationship with requirements.

They love having a list of things they need
to engineer into the product they are
building, but they hate it when the require-
ments are unclear, inaccurate, self-contra-
dictory, or incomplete. They are right to
be concerned.

The price is high for teams that fail to
define requirements or that do it poorly.
Ill-defined requirements result in require-
ments defects, and the consequences of
these defects are ugly [1- 6]:
• Expensive rework and cost overruns.
• A poor quality product.
• Late delivery.
• Dissatisfied customers.
• Exhausted and demoralized team

members.
To reduce the risk of software project

failure and the costs associated with defec-
tive requirements, project teams must
address requirements early in software
development and they must define
requirements properly.

A Short Review of
Requirements
Before we get to the nitty-gritty of build-
ing requirements models, let us look at
some basic requirements concepts. User
requirements – the focus of this article –
are one of three types of requirements
(see Figure 1). The other two types are
those related to the mission or business
and those that describe the software itself.

Business requirements are statements of
the business rationale for the project.
These requirements grow out of the
vision for the product which, in turn, is
driven by mission (or business) goals and
objectives. The product’s vision statement
articulates a long-term view of what the
product will accomplish for its users. It
should include a statement of scope to
clarify which capabilities are and are not to
be provided by the product.

User requirements define the software
requirements from the user’s point of
view, describing the tasks users need to
accomplish with the product and the qual-

ity requirements of the software from the
user’s point of view. Users can be broadly
defined to include not only the people
who access the system but also inanimate
users such as hardware devices, databases,
and other systems. In the systems pro-
duced by most government organizations,
user requirements are articulated in their
concept of operations document.

Software requirements are detailed
descriptions of all the functional and non-
functional requirements the software must
fulfill to meet business and user needs.
Nonfunctional requirements include soft-
ware design constraints, external inter-
faces, and quality attributes such as per-
formance, security, installation ability,
availability, safety, reusability, and more [7].
Software requirements, which are docu-
mented in a software requirements specifi-
cation, establish an agreement between
technical specialists and business man-
agers on what the product must do.

The key activities in requirements
development are the following: elicitation,
analysis, specification, and validation [8]. In
elicitation, you identify the sources of
requirements and solicit requirements
from those sources. Requirements elicita-
tion relies on appropriate stakeholder
involvement, one of the most critical ele-
ments for project success [9]. The goal of
requirements analysis is to sufficiently
understand and define the requirements
so that stakeholders can prioritize and
allocate them to software. Specification
involves differentiating and documenting
functional and nonfunctional require-
ments and checking that the requirements
are documented unambiguously and com-
pletely. Validation examines the require-
ments to ensure that they satisfy user’s
needs.

Elicitation and analysis are crucial early
activities that require intense stakeholder
involvement. To analyze the requirements

Good Practices for Developing User Requirements

Defining user requirements – the needs of the stakeholders who directly interact with the system – is arguably one of the most dif-
ficult challenges in building complex systems. When it comes to defining user requirements for software, it is essential to use models
to document and analyze the requirements. This article provides a requirements model roadmap that helps software development
teams understand the effective use of requirements models. It also describes good practices for creating and using these models.

Ellen Gottesdiener
EBG Consulting

Business
Requirements

1

Why the project is being
undertaken.

Business
Requirements

User
Requirements

Software
Requirements

What users will be able to do
with the product.

What the developers
need to build.

Project
Charter

Product
Vision

User Requirements

S
o

ft
w

ar
e

R
eq

u
ir

em
en

ts

D
es

ig
n

 a
n

d
 D

ev
el

o
p

m
en

t

Scope
High-Level

and
Detailed

Alternative
Models

* Business Model

Stakeholder
Categories

Actor Table
Optional:

Actor Map,
Dialog Map

Prototypes
Dialog Hierarchies

Personas
Who?

Relationship Map*
Glossary

Context Diagram
Data Model

Class Model
Data Dictionary

Data Tables
What?

Event-Response
Table

State Diagrams
State-Data

MatrixWhen?

Business
Policies

Business Rules
Decision Tables
Decision TreesWhy?

Process Map*
Use Cases

Optional:
Use Case Map,

Use Case Packages

Scenarios, Stories
Activity Diagrams,

Data Flow Diagrams
How?

Level 1:

Level 2:

Level 3:

Figure 1: Requirements Levels

14 CROSSTALK The Journal of Defense Software Engineering March 2008

you are eliciting, a key good practice is to
create requirements models (also referred to
as analysis models): user requirements repre-
sented by text (such as tables, lists, or
matrices), diagrams, or a combination of
text and graphical material [7]. These
models facilitate communications about
requirements with your stakeholders.

As you elicit requirements from stake-
holders and represent them using require-
ments models, you should verify your
models to ensure they are internally con-
sistent. You also need to prioritize your
requirements: With active user involve-
ment, you analyze the trade-offs among
requirements to establish their relative
importance [8].

The User Requirements
Model Roadmap
Now let us take a closer look at user
requirements models. The beauty of the
Requirements Model Road Map (Figure 2)
is that it shows the relationships between
the three types of requirements (business,
user, and software) and categorizes the
models you can use to represent each type.
Each model is designed to answer one of
the 5Ws + 1H questions: Who? What?
When? Why? How? [7].

(Note that the question Where? pro-
vides information mainly about nonfunc-
tional requirements. Although these are
not user requirements – which depict
functional requirements – analysts asking
Where? during analysis will also discover a
slice of useful quality attributes such as
performance and usability).

In addition, the user requirements
model falls into three categories: scope,
high-level and detailed, and alternative
models. Some models (shown in italics in

Figure 2) are useful for analyzing the busi-
ness process, and others are useful for
clarifying project scope. Defining stake-
holder categories early in elicitation, for
example, identifies the people you should
involve in requirements modeling. High-
level and detailed models, such as use
cases, a data model, and business rules,
can reveal requirements defects such as
errors, omissions, and conflicts.
Requirements analysts and engineers can
substitute alternative models when the
engineers better communicate require-
ments or fit the project culture.

Each requirements model represents
information at a different level of abstrac-
tion. A model such as a state diagram rep-
resents information at a high level of
abstraction, whereas detailed textual
requirements represent a low level of
abstraction. By stepping back from the
trees (textual requirements) to look at the
forest (a state diagram), the team can dis-
cover requirements defects not evident
when reviewing textual requirements
alone.

Because the requirements models are
related, developing one model often leads
to deriving another. Examples of one
model driving another model are the fol-
lowing:
• Actors initiate use cases.
• Scenarios exemplify instances of use

cases.
• A use case acts upon data depicted in

the data model.
• A use case is governed by business

rules.
• Events trigger use cases.

In this way, you can use various routes
to harvest one model from another. This
approach helps you develop the models
quickly while at the same time verifying

the model’s completeness and correctness.

User Requirements Models
Here, in alphabetical order, are brief
descriptions of the common user require-
ments models shown in the User
Requirements Models Road Map.

Activity Diagram
An activity diagram is a model that illus-
trates the flow of complex use cases using
Unified Modeling Language (UML) nota-
tion. This model is useful for showing use
case steps that have multiple extension
steps, and for visualizing use cases.

Actor Map
An actor map is a model that shows actor
interrelationships. An actor map supple-
ments the actor table and can also be used
as a starting point for identifying use cases.
Actors can be written on index cards (one
per index card) or drawn using the UML
notation. UML depicts actors in an actor
map as stick figures, as boxes (supplement-
ed by the notation “<<Actor>>”), or as a
combination (e.g., stick figures for human
actors, and boxes for nonhuman actors).

Actor Table
An actor table is a model that identifies and
classifies system users in terms of their
roles and responsibilities. This model helps
reveal missing system users and identifies
functional requirements as user goals (use
cases), and also management to clarify job
responsibilities.

Business Policies
Business policies are guidelines, standards,
and regulations that guide or constrain the
conduct of a business. Policies are the basis
for the decision making and knowledge that
are implemented in the software and in
manual processes. Whether imposed by an
outside agency or from within the company,
policies are used to streamline operations,
increase customer satisfaction and loyalty,
reduce risk, improve revenue, and adhere to
legal requirements. This model helps you
identify policies allocated to business peo-
ple, which in turn allows management to
prepare for software implementation by
updating procedures, guidelines, training,
forms, and other assets needed to enforce
the policies. Some policies are also allocat-
ed to software for implementation.

Business Rules
Business rules are text statements that
decompose business policies. Business
rules describe what defines, constrains, or
enables the software behavior. You use
business rules to specify the controls that

Business
Requirements

1

Why the project is being
undertaken.

Business
Requirements

User
Requirements

Software
Requirements

What users will be able to do
with the product.

What the developers
need to build.

Project
Charter

Product
Vision

User Requirements

S
o

ft
w

ar
e

R
eq

u
ir

em
en

ts

D
es

ig
n

 a
n

d
 D

ev
el

o
p

m
en

t

Scope
High-Level

and
Detailed

Alternative
Models

* Business Model

Stakeholder
Categories

Actor Table
Optional:

Actor Map,
Dialog Map

Prototypes
Dialog Hierarchies

Personas
Who?

Relationship Map*
Glossary

Context Diagram
Data Model

Class Model
Data Dictionary

Data Tables
What?

Event-Response
Table

State Diagrams
State-Data

MatrixWhen?

Business
Policies

Business Rules
Decision Tables
Decision TreesWhy?

Process Map*
Use Cases

Optional:
Use Case Map,

Use Case Packages

Scenarios, Stories
Activity Diagrams,

Data Flow Diagrams
How?

Level 1:

Level 2:

Level 3:

Figure 2: User Requirements Model Roadmap

The Beginning

Good Practices for Developing User Requirements

March 2008 www.stsc.hill.af.mil 15

govern user requirements and to clarify
which rules should be enforced in software
and which will be allocated to business
people. Because business rules require
data, defining the rules will uncover need-
ed data. User requirements depend on the
complete and correct enforcement of
business rules.

Class Model
A class model is a diagram that shows the
classes to be used in a system. A class is the
generic definition of a collection of simi-
lar objects (persons, places, events, and
physical artifacts). You use a class model
in projects employing object-oriented
software development methods, tools, or
databases.

Context Diagram
A context diagram is a model that shows
the system in its environment with the
external entities (people and systems) that
provide and receive information or mate-
rials to and from the system. This model
helps stakeholders to quickly and simply
define the project’s scope and to focus on
what the system needs as inputs and pro-
vides as outputs. A context diagram helps
the team derive requirements models
(such as actors, use cases, and data model
information) and can reveal possible
scope creep problems as new external
entities are added.

Data Dictionary
A data dictionary is a model that provides
a description of the data attributes and
structures used in a system. This model is
a central place for defining each data ele-
ment and describing its data type, length,
and format. Some project teams use data
modeling tools that provide data dictio-
nary capabilities.

Data Flow Diagram (DFD)
A DFD is a model that shows related
inputs, processes, and outputs for process-
es that respond to external or temporal
events. Unlike use cases (which are orient-
ed toward actor goals), DFDs focus on
the data that goes in and out of each
process, taking an internal view of how
the system handles events.

Data Model
A data model shows the informational
needs of a system by illustrating the logi-
cal structure of data independent of the
data design or data storage mechanism.
You use a data model to identify, summa-
rize, and formalize the data attributes and
structures needed to satisfy functional
requirements and to create an easy-to-

maintain database. Data models help to
simplify design and programming and
help identify external data entities (other
systems that supply data to the software).

Data Table
A data table is a model in the form of a
table that contains sample data to elicit
and validate a data model or data dictio-
nary. Each row represents a set of occur-
rences in an entity, and each column rep-
resents sample attributes.

Decision Table
A decision table is a model that specifies
complex business rules concisely in an
easy-to-read tabular format. A decision
table documents all the possible condi-
tions and actions that need to be account-
ed for in business rules. Conditions are fac-
tors, data attributes, or sets of attributes
and are equivalent to the left side of atom-
ic business rules. Actions are conclusions,
decisions, or tasks and are equivalent to
the right side of atomic business rules.
Factors that must be evaluated form the
top rows of the table. Actions make up
the bottom rows of the table.

Decision Tree
A graphical alternative to a decision table,
a decision tree presents conditions and
actions in sequence. Each condition is
graphed with a decision symbol represent-
ing yes or no (or a true or false conclusion).
Branches to additional conditions are
drawn left to right. Actions are drawn
inside rectangles to the right of the branch
to which they apply.

Dialog Hierarchy
A dialog hierarchy is a model that shows
the dialogs in a system (or Web page) as a
hierarchy. It does not show transitions.

Dialog Map
A dialog map is a diagram that illustrates
the architecture of a system’s user inter-
face. It shows the visual elements that
users manipulate to step through tasks
when interacting with the system. Dialog
maps can be used to uncover missing or
erroneous use case paths and to validate
use cases, scenarios, or both in require-
ments walkthroughs with users.

Event-Response Table
An event-response table model identifies
each event (an input stimulus that triggers
the system to carry out a function) and the
event responses resulting from those
functions. An event-response table defines
the conditions to which the system must
respond, thereby defining the functional

requirements at a scope level. (Each event
requires a predictable response from the
system.) This model can also reveal needs
for external database access or file feeds.

Glossary
The glossary is a list of definitions of busi-
ness terms and concepts relevant to the
software being developed or enhanced.

Persona
The persona is a description of an actor
as a fictitious system user or archetype.
You describe each persona as if he or she
is a real person with personality, family,
work background, preferences, behavior
patterns, and personal attitudes. The focus
is on behavior patterns rather than job
descriptions. Each persona description is
written as a narrative flow of the person’s
day with added details about personality.
Four or five personas represent the roles
that use the system most often or are
most important to the functional require-
ments.

Process Map
A process map is a diagram that shows the
sequence of steps, inputs, and outputs
needed to handle a business process
across multiple functions, organizations,
or job roles. This model helps you identi-
fy the processes that are allocated to the
business (manual processes) and those
that will be allocated to software.

Prototype
A prototype is a partial or preliminary ver-
sion of a system created to explore or val-
idate requirements. Exploratory proto-
types can be mock-ups using paper, white-
boards, or software tools.

Relationship Map
A relationship map is a diagram that
shows the information and products that
are exchanged among external customers,
suppliers, and key functions in the organi-
zation. This model helps you understand
the organizational context of the project
by identifying affected business functions
and their inputs and outputs.

Scenario
A scenario is a description of a specific
occurrence of a path through a use case
(i.e., a use case instance). Example: A cus-
tomer calls to reschedule a job, adding
another service and requesting a repeat
customer discount.

Stakeholder Categories
Stakeholder categories are structured
arrangements of groups or individuals

who have a vested interest in the product
being developed. You use this model to
understand who has an interest in or who
has influence on the product, who will use
the software and its outputs, and who the
product will affect in some way. These
groups and individuals will need to be
kept informed about requirements
progress, conflicts, changes, and priorities.

State-Data Matrix
A state-data matrix model shows attribut-
es that are added or changed during a state
change. Each attribute is identified in the
data model and data dictionary.

State Diagram
A state diagram is a visual representation
of the life cycle of a data entity. Events
trigger changes in data, resulting in a new
state for that entity. Each state is a defined
condition of an entity, a hardware compo-
nent, or the entire system that requires
data, rules, and actions. A state diagram
can also show actions that occur in
response to state changes. You use a state
diagram to understand how events affect
data and to identify missing requirements
such as events, business rules, data attrib-
utes, and use case steps.

Story
A story is a text description of a path
through a use case that users typically doc-
ument. Stories replace use cases and sce-
narios when you are planning releases for
change-driven software projects. Stories
are essentially detailed scenarios, but each
story is judged by developers to require
less than two weeks to develop. When
combined with acceptance tests, stories
are roughly equivalent to use cases.

Use Case
The use case describes in abstract terms
how actors use the system to accomplish
goals. Each use case is a logical piece of
user functionality that can be initiated by
an actor and described from the actor’s
point of view in a technology-neutral
manner. Use cases summarize a set of
related scenarios. The purpose of use

cases is to reveal functional requirements
by clarifying what users need to accom-
plish when interacting with the system.
Use cases are a natural way to organize
functional requirements and can be easier
for users to understand and verify than
textual functional requirements state-
ments.

Use Case Map
The use case map is a model that illus-
trates the work flow of use cases. Each
use case map represents a set of highly
cohesive use cases sharing the same data,
often triggered by the same events or ini-
tiated by the same actor.

Use Case Package
The use case package is a logical, cohesive
group of use cases that represents higher
level system functionality. You create a use
case package by combining use case maps
or grouping use cases. Most systems will
have multiple packages. You can use a
UML file folder notation to show each
package, and you can name each package
according to its functionality.

Good Practices for Modeling
User Requirements
Following good requirements modeling
practices (see Good Practices for Modeling
User Requirements, Table 1) is the key to
successful development of user require-
ments. These practices accelerate model-
ing, engage stakeholders, and give you
high-quality requirements – ones that are
correct, complete, clear, consistent, and
relevant.

The first good practice is to represent
and agree on the project’s scope early in
requirements elicitation. Why? It has to do
with scope creep – the unrestrained
expansion of requirements as the project
proceeds. Scope creep is one of the great-
est risks in software development [6]. A
clear definition of product scope narrows
the project’s focus to enable better plan-
ning, better use of time, and better use of
resources. Moreover, scope-level models
establish a common language that team
members can use to communicate about

the requirements and help to articulate the
boundary between what is in and what is
not in scope for the product.

Another good practice, as mentioned
earlier, is to document your product using
multiple user requirements models. Each
model describes one aspect of a problem
the product will address. Thus, no single
model can describe all the requirements.
Furthermore, elements of one model
often link to elements of another, so one
model can be used to uncover related or
missing elements in another model.

It is also good to use both text and
graphics to represent user needs. Multiple
representations tap into different modes
of human thinking. Some people think
more precisely with words, and others
understand concepts more quickly via dia-
grams. Using both types of representa-
tions leverages these different thinking
modes. In addition, mixing text and
graphics makes requirements develop-
ment more interesting and engaging. It
provides variety and permits stakeholders
to understand their requirements from
more than one angle.

You should also select models that fit
the domain of your product. That is
because some models are better suited to
communicate requirements for certain
domains. For example, When models (such
as an event-response table and a state
machine diagram) are well suited to
dynamic domains – those that respond to
continually changing events to store data
and act on it based on its state at a point.

Another well-known good practice is
to develop your requirements iteratively.
Each iteration is a self-contained mini-
project in which you undertake a set of
activities – elicitation, analysis, specifica-
tion, and validation – resulting in a subset
of requirements. The rationale for this
practice is that user requirements seldom
remain unchanged for a long period. On
teams using agile methods, each iteration
also incorporates the work needed to
deliver the working software that satisfies
those requirements. In some domains,
requirements change faster than the sys-
tem or subsystem can be developed. In
addition, the cost of implementing
changes increases dramatically as the pro-
ject proceeds. Developing requirements in
an evolving manner is essential in reducing
these risks.

You can also use requirements models
to identify requirements defects. The
interconnections among the models help
to expose any inconsistencies in related
models. This self-checking accelerates the
team’s ability to uncover missing, erro-
neous, vague, or conflicting requirements.

The Beginning

16 CROSSTALK The Journal of Defense Software Engineering March 2008

2

1. Define, represent, and agree on the project’s scope early in requirements
elicitation.

2. Document your product using multiple user requirements models.
3. Select models that fit the domain of your system.
4. Develop requirements models iteratively.
5. Use requirements models to identify requirements defects.
6. Use models to communicate: Create simple, readable diagrams focused less

on beauty and more on understanding.
7. Conduct retrospectives as you iterate through requirements development.

Table 1: Summary: Good Practices for Modeling User Requirements

Good Practices for Developing User Requirements

March 2008 www.stsc.hill.af.mil 17

When you are creating graphical mod-
els, it is crucial to create simple, readable
diagrams. The benefit of diagrams is that
they give you a way to quickly communi-
cate complex, controversial, or unclear
requirements. Thus, you should avoid
complex, hard-to-read diagrams. Draw
diagrams manually to begin with or use an
easy-to-learn drawing tool. Keep them
simple and easy to read. Focus on main-
taining accuracy and exposing unclear or
incorrect requirements – not beauty or
completeness.

The final good practice I want to men-
tion applies whether or not you are using
modeling: I always tell my clients to con-
duct short retrospectives at the end of
each requirements iteration. A retrospective
is a special meeting in which the team
explores what works, what does not work,
what can be learned from the just com-
pleted iteration, and what ways to adapt
their processes and techniques before
starting another iteration [10, 11].
Retrospectives allow for early learning and
correction and may be your team’s most
powerful tool for process improvement.

On Your Way
Software development teams enjoy access
to a world of tools and technologies, but
building truly successful software still
depends on team members gaining a deep
understanding of user needs. When your
team is developing a software product,
you will save time, money, and frustration
by using appropriate models to describe
and analyze the product’s user require-
ments.u

References
1. Reifer, Donald J. “Profiles of Level 5

CMMI Organizations.” CrossTalk
Jan. 2007.

2. Schwaber, Carey. “The Root of the
Problem: Poor Requirements.” IT
View Research Document. Forrester
Research, 2006

3. Dabney, James B., and Gary Barber.
“Direct Return on Investment of
Software Independent Verification and
Validation: Methodology and Initial
Case Studies.” Assurance Technology
Symposium, June 2003 <http://
sarpresults.ivv.nasa.gov/ViewResearch
/24.jsp>.

4. Hooks, Ivy F., and Kristina A. Farry.
Customer-Centered Products: Creat-
ing Successful Products Through
Smart Requirements Management.
New York: Amacom, 2001.

5. Nelson, Mike, James Clark, and
Martha Ann Spurlock. “Curing the
Software Requirements and Cost

Estimating Blues.” The Defense
Acquisition University Program
Manager Magazine Nov.-Dec. 1999.

6. Jones, Capers. Patterns of Software
Systems Failure and Success. Boston,
MA: Thomson Computer Press, 1996.

7. Gottesdiener, Ellen. Software
Requirements Memory Jogger: A
Pocket Guide to Help Software and
Business Teams Develop and Manage
Requirements. Methuen, MA:
Goal/QPC, 2005.

8. Institute of Electrical & Electronics
Engineers (IEEE). “IEEE Software
Engineering Body of Knowledge.”
IEEE Computer Society, 2004
<www.swebok.org>.

9. Standish Group International.
“CHAOS Chronicles.” Standish
Group International, 2003.

10. Kerth, Norman L. “Project Retro-
spectives: A Handbook for Team
Reviews.” New York: Dorset House,
2001.

11. Gottesdiener, Ellen. “Team Retro-
spectives for Better Iteration Assess-
ment.” The Rational Edge Apr. 2003
<http://ebgconsulting.com/Pubs/
Articles/TeamRetrospectives-Gottes
diener.pdf>.

About the Author

Ellen Gottesdiener,
principal consultant, EBG
Consulting, helps get the
right requirements so
projects start smart and
deliver the right product

at the right time. Her book, “Require-
ments by Collaboration: Workshops for
Defining Needs” describes how to use
multiple models to elicit requirements in
collaborative workshops, and “The
Software Requirements Memory Jogger”
describes essentials for requirements
development and management. In addi-
tion to providing training, eLearning and
consulting services, she speaks at and
advises for industry conferences, writes
articles, and serves on the Expert Review
Board of the International Institute of
Business Analysis Business Analysis
Body of Knowledge.

EBG Consulting, Inc.
1424 Ironwood DR West
Carmel, IN 46033
Phone: (317) 844-3747
E-mail: ellen@ebgconsulting.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

JAN2008 c TRAINING AND EDUCATION

FEB2008 c SMALL PROJECTS, BIG ISSUES

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Tabular Notations for State Machine-Based Specifications

Markus Herrmannsdörfer, Dr. Sascha Konrad, and Brian Berenbach
Siemens Corporate Research

The term reactive system describes a sys-
tem that needs to continuously react

to inputs coming from the environment.
Finite state machines are a widely used
concept for specifying the behavior of
such systems. Since finite state machines
allow the rigorous capture of functional
aspects of system behavior1, they offer
several advantages over informal specifi-
cations. For example, they provide the
ability to automatically generate code or
test cases, and they enable formal verifica-
tion and validation (V&V). Generally, a
finite state machine is an appropriate rep-
resentation when a problem or solution
has the following characteristics:
• Finite and discrete set of states (e.g.,

on, off, and standby).
• Discrete and manageable set of

inputs.
• Change of state is only performed in

response to an input (e.g., if a button
is pressed, then the machine transi-
tions from state off to state on).
State machines2 are used for specifying

functional properties for a wide variety of
systems, such as control systems and user
interfaces. For example, Siemens uses
state machines to precisely specify the cir-
cuitry in mail sorting systems and the
controls in car radios. They are also the
paradigm of choice for software compiler
design and programmatic interpretation
of natural language. Numerous graphical
notations for state machines have been
developed and are commonly used today,
such as state transition diagrams, Harel
statecharts [1], and UML state machine
diagrams [2]. Graphical notations are
often preferred by developers, analysts,
and testers over textual information, since
diagrams allow the visualization of com-
plex relationships.

Tabular notations for state machines (com-
monly also referred to as state tables or state
transition tables) offer complementary
advantages to these graphical notations.
For example, the incompleteness of a
specification, i.e., the actions of the sys-

tem in a specific state in response to a
specific event that are not addressed by
the specification, can easily be identified
as empty cells in the table. In addition,
tabular notations are relatively compact
and have shown to scale well to practical
systems [3]. Due to these reasons, tabular
notations for state machines are preferred
in some domains over graphical notations
for the rigorous specification of system
behavior. For instance, Siemens Auto-
motive commonly receives system
requirements in the form of state tables,
captured in either Excel sheets or propri-
etary databases.

While a tabular representation is rela-
tively compact and the completeness of
the requirements specification can easily
be determined, it has been shown to
cause numerous difficulties. For instance,
the requirements specification for a sys-
tem of realistic size is often quite large
and of considerable complexity, consist-
ing of numerous large tables. As a result,
precisely understanding the required
behavior solely through visual inspection
is difficult. Moreover, requirements cap-
tured in simple Excel sheets are difficult
to analyze for consistency and adherence
to critical properties.

This article presents and evaluates
several state machine-based tabular nota-
tions that can address some of the afore-
mentioned problems. For instance, some
notations enhance the understandability
of the specification by offering a comple-
mentary graphical representation. In addi-
tion, hierarchical composition is used by
several notations to keep the specification
tractable and some provide tool support
for V&V. The remainder of this article is
organized as follows: the Background sec-
tion provides an overview of finite state
machines and Harel statecharts. The
Tabular Notations for State Machines sec-
tion describes five approaches using tabu-
lar notations for state machine-based
specifications. We conclude by evaluating
these notations for use in software devel-

opment with respect to several factors.

Background
This section introduces finite state
machines, including a common graphical
and tabular notation, and briefly describes
the advanced features of Harel state-
charts.

Finite State Machine
The term finite state machine describes a
class of computational models that con-
sist of a finite set of states, a start state,
a set of inputs (events), and a transition
function that determines the next state of
the finite state machine based on the cur-
rent state and input [4]. The finite state
machine starts computation in the start
state; transitions between states are per-
formed based on the transition function.
Numerous variants of this basic type of
state machine exist. For example, Moore
machines extend finite state machines
with outputs (actions) associated with
states, while Mealy machines associate
outputs with transitions [5]. For the
remainder of this article, we use Mealy
machines as the computational model.
Finite state machines may be determinis-
tic or non-deterministic. In deterministic
finite state machines for a given input,
one transition can be taken from the cur-
rent state, at most. In non-deterministic
finite state machines, however, one input
may enable several transitions of which
one is then taken.

A common way of representing finite
state machines is the use of state transition
diagrams (commonly also referred to as
state diagrams). State transition diagrams
are directed graphs in which states are
depicted as nodes and transitions are rep-
resented by directed edges. Transitions
are commonly labeled with the triggering
events and actions, using the following
general syntax: trigger/action(s). Figure 1
contains a sample state transition dia-
gram showing the simple behavior of a
door: The door can be opened or closed.

Finite state machines are a widely used concept for specifying the behavior of reactive systems. Numerous graphical notations
based on finite state machines have been developed and are commonly used today, such as state transition diagrams, Harel
statecharts, and Unified Modeling Language (UML) state machine diagrams. While not as widely used, tabular notations
for state machine-based specifications offer complementary advantages to diagrammatic notations. In this article, we describe
five approaches using tabular notations for state machine-based specifications and evaluate these approaches for use in soft-
ware development.

18 CROSSTALK The Journal of Defense Software Engineering March 2008

March 2008 www.stsc.hill.af.mil 19

If the door is closed, then it can be
locked or unlocked. The door can only
be opened when it is unlocked. If the
door is closed (irrespective of being
locked or unlocked), then it can be
pushed in. Because of this event, an
alarm will sound and the door will then
be permanently in the state Broken.

In addition to the graphical represen-
tation, finite state machines may be spec-
ified using state transition tables. A state
transition table denotes the action per-
formed by the automaton and the next
state based on the current state (row) and
event that occurred (column). A dash
denotes that no such transition exists. A
state transition table representing the
automaton specified in Figure 1 can be
seen in Table 1. Using this tabular nota-
tion, completeness of the specification
can be readily established. Since a cell
needs to be labeled explicitly with a dash
if no such transition exists, a cell that
does not contain a destination state or a
dash renders the specification incom-
plete. Using a graphical notation, deter-
mining the completeness of the specifi-
cation is more difficult, since a missing
arrow in a diagram could potentially be
the result of an omission, but could also
mean that no such transition exists.

Harel Statecharts
While finite state machines have shown to
be useful for modeling reactive systems,
their representation as state transition dia-
grams does not scale well to large-scale
systems and may become unstructured, unre-
alistic, and chaotic. To address this problem,
David Harel developed statecharts that
extend state transition diagrams with the
following concepts [1]:
1. Depth. Commonly also referred to as

XOR (eXclusive OR) decomposition or
state nesting. Using state nesting, a state
may be a composite state that con-
tains exactly one region serving as a
container for sub states. To be in the
composite state, the system must be
in exactly one of its sub states (which
itself may be composite states again).

2. Orthogonality. Also known as AND
decomposition. Using AND decompo-
sition, a state may be a composite state
comprising two or more orthogonal
regions executing independently and
concurrently. Therefore, to be in the
composite state, the system must be
in a state of all of its orthogonal
regions at the same time. Each
orthogonal region may itself contain
additional composite states.

3. Broadcast communication. Since
orthogonal regions are independent

and execute concurrently, the compu-
tational model of statecharts uses
broadcast communication. As a
result, each orthogonal region
receives occurring events and may
take transitions that had become
enabled.
In addition to these basic extensions,

Harel statecharts provide additional con-
structs such as entry and exit actions for
states, conditionals, and history states
(see [1] for more details). The UML nota-
tion for state machines is based on Harel
statecharts and uses a number of these
extensions. (For a detailed comparison of
the syntax and semantics of UML state
machine diagrams and Harel statecharts,
please refer to [6].) Figure 2 (see page 20)
shows how statecharts provide more
structure and reduce the perceived com-

plexity of the diagrammatic representa-
tion of the door example in comparison
to the state transition diagram in Figure
1. For instance, after the introduction of
a composite state Closed in Figure 2,
describing the behavior of the door
when it is pushed in requires only one
transition, which makes the diagram
appear cleaner and less cluttered. In gen-
eral, the extensions provided by Harel
statecharts and UML state machine dia-
grams have shown to be an effective
means to reduce the perceived complexi-
ty of state machine representations for
reactive systems. For example, the
authors in [7] performed some studies
with university students and concluded
that the use of composite states in UML
state machine diagrams improves under-
standability.

close_door/

open_door/ Transition

Start
State

State

unlock/

lock/

push_in/
sound_alarm

push_in/
sound_alarm

Action

Event

close_door/

open_door/

unlock/

lock/

 Closed

push_in/
sound_alarm

Opened

Closed, Unlocked Closed, Locked

Broken

Opened

LockedUnlocked

Broken

Figure 1: Sample State Transition Diagram

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 1: State Transition Table Corresponding to Figure 1

Tabular Notations for State Machine-Based Specifications

Tabular Notations for State
Machines
This section describes five approaches that
use tabular notations for state machine-
based models, namely Virtual Finite State
Machines (VFSM) [8], Software through
Pictures (StP) [9], Parnas Tables [10],
Software Cost Reduction (SCR) [3], and

the Requirements State Machine Language
(RSML) [11].

VFSMs
The VFSM is a concept for the specifica-
tion of control systems in a virtual envi-
ronment. The environment is termed vir-
tual since events and actions of the envi-
ronment are represented by abstract

names for inputs and outputs in the state
machine [8]. The behavior of the system
may be specified as a state table that shows
actions and transitions performed in a cer-
tain state based on specific conditions.
Table 2 shows a sample state table for
State1. Upon entering the state, Output1 is
always produced and upon exiting the
state, Output2 is always produced. If
Condition1 is satisfied, then Output3 is pro-
duced without causing a state change
(internal transition). However, if Condition2

is satisfied, then Output4 is produced and
the state machine transitions to State2

(external transition).
While VFSMs support entry and exit

actions, they do not support state nesting
or orthogonality. However, different sets
of concurrent high-level and low-level
finite state machines can be created and
connected to achieve structuring through
hierarchical decomposition [12].

The application of VFSMs is facilitat-
ed by StateWORKS Studio, a tool suite for
creating specifications using VFSMs [13].
The tool suite offers an editor that com-
bines and synchronizes diagrammatic and
tabular views of VFSMs. In addition, a
simulator and an executor are provided
that can be used to validate and execute
VFSM specifications.

StP
StP Structured Environment (SE) is a tool-
supported approach for specifying a system
using diagrammatic notation complement-
ed with tabular notation [9]. The behavior
of a system is specified in terms of control
flow diagrams and state transition dia-
grams. Complementary to state transition
diagrams, two tabular notations are provid-
ed: state event matrix and state transition table.

A state event matrix shows all transi-
tions of the state machine in a grid of
source states and triggering events. Similar
to the state transition table shown in Table
1, a transition is entered into the cell at the
intersection of its source state (row) and
its triggering event (column). The cell con-
tains the list of actions to perform and the
target state of the transition. Table 3
shows an example state event matrix, in
which the state machine transitions from
State1 to State2 upon occurrence of Event1,
producing Action1, and it transitions back
to State1 upon occurrence of Event2, pro-
ducing Action2. If Event3 occurs in State1,
then the state machine performs Action3

but remains in the current state.
A state transition table shows all tran-

sitions of a state machine in a list (refer to
Table 4). The tabular layout provides a
column for the source state, the triggering
event, the action, and the target state.

The Beginning

20 CROSSTALK The Journal of Defense Software Engineering March 2008

close_door/

open_door/ Transition

Start
State

State

unlock/

lock/

push_in/
sound_alarm

push_in/
sound_alarm

Action

Event

close_door/

open_door/

unlock/

lock/

 Closed

push_in/
sound_alarm

Opened

Closed, Unlocked Closed, Locked

Broken

Opened

LockedUnlocked

Broken

Figure 2: Sample StatechartEvent
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 3: StP SE State Event Matrix

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 2: VFSM State Table

Tabular Notations for State Machine-Based Specifications

March 2008 www.stsc.hill.af.mil 21

The tabular notations provided by StP
SE are compact and readable. However,
diagrams and tables of StP SE provide
neither state nesting nor orthogonal
regions. Similar to VFSMs, structuring is
possible using hierarchical decomposition.
In order to facilitate the implementation
phase, the StP SE tool suite provides code
generation and reverse engineering capa-
bilities for the C programming language.

Parnas Tables
Parnas and Madey developed the four-
variable model as an underlying state
machine model to formally specify system
requirements [14]. The name of the model
arises from the fact that a specification
contains four distinct sets of variables:
• Variables monitored by the system

(MON).
• Variables controlled by the system

(CON).
• Variables that the input devices of the

system read from (INPUT).
• Variables that the output devices of

the system write to (OUTPUT).
The relations between the variable sets of
the four-variable model are illustrated in
Figure 3.

Specifically, the variables are linked by
the following five relations:
• Natural constraints on the monitored

and controlled variables (NAT).
• Expected change of controlled vari-

ables in response to changes in moni-
tored variables, i.e., the actual system
requirements (REQ).

• Relation of monitored variables to
input variables (IN).

• Relation of controlled variables to out-
put variables (OUT).

• Relation between input and output
variables, realized by software (SOFT).
A possible notation for expressing

these relations are Parnas Tables [10].
Parnas Tables are a collection of 10 table
types for capturing functional and rela-
tional expressions, each having a distinct
syntax and semantics. A developer should
choose the table format that produces a
simple, compact representation for
expressing the relation at hand. For each
table type, rules exist for identifying
incompleteness and inconsistency.

Table 5 (see page 22) contains a sam-
ple Parnas Table of type decision table. A
decision table can represent a function or
relation where the domain is an ordered
set of potentially distinct types. One
dimension of the table itemizes the ele-
ments of the domain. Table 5 shows the
syntax of a decision table representing the
relation between two variables, A and B,
and a decision that is made based on the

values of these variables. For instance,
Table 5 states that if A = A2 and B = B2

then make Decision2.
Parnas Tables do not support nesting

or orthogonality, but allow the developer
to reference a function that is defined in a
different table. Since Parnas Tables have
completely formal semantics, tool support
can be developed to check the tables auto-
matically. However, to the best of our
knowledge, such tool support is not cur-
rently available.

SCR
SCR is a set of formal methods for the
design of software systems [3]. Similar to
Parnas tables, SCR also uses the four-vari-
able model as its underlying abstraction, and
the relationships between monitored and
controlled variables are captured in tables
[10, 14].

In order to capture the relations con-
cisely, SCR defines modes. A mode
describes a set of system states in which
the system exhibits equivalent behavior in
response to events and conditions. Mode
classes then describe the relationships
between these modes and are modeled in
terms of mode transition tables. In order
to model complex systems with indepen-
dent components, several mode classes
may be constructed to capture concurren-
cy. The occurrence of an event is denoted
by a value change of a condition. @T is
used to specify that a condition becomes
true, while @F specifies that a condition
becomes false.

SCR uses three different types of
tables to specify a system: condition tables,
event tables, and mode transition tables.

A condition table defines the value of
a variable depending on the mode and a
condition. For example, in Table 6, the
variable var3 is assigned the value greater,
equal, or less in the modes M1 and M2 of
mode class MC1, depending on the values
of variables var1 and var2.

An event table defines the value of a
variable as a function of the mode and a
(possibly conditioned) event. For example,
Table 7 (see page 22) assigns variable var4 a
true or false value in the modes M1 and M2

of mode class MC1 based on a change in
value of the variable var3.

Finally, the mode transition table

defines how the mode of a mode class
changes in response to events. A sample
mode transition table for the mode class
MC1 is given in Table 8. Specifically, the
system changes from mode M1 to mode M2

upon variable var4 becoming true, and
switches back to mode M1 if the variable
becomes false. Commonly, a mode transi-
tion table contains only events that change
the mode; events that do not cause mode
changes are omitted to increase readability.

The SCR notation is rigorous and com-
pact, but purely tabular. Nesting and
orthogonality are not supported by the
notation, but hierarchical decomposition
can be used to structure complex systems.
Tools to support various V&V approaches
have been developed [3]. Once the system
model is complete, the model can be
checked for different types of errors, such
as incompleteness or ambiguities. In addi-
tion, a simulator can be used to run sce-
narios and inspect whether the results are
as expected.

RSML
The RSML was originally developed to
write requirements specifications for
process-control systems such as a collision
avoidance system for a commercial airlin-
er [11]. RSML combines a graphical nota-
tion based on Harel statecharts with a tab-
ular notation for specifying transition con-
ditions. As such, RSML retains most of
the advanced features of statecharts, such
as depth and orthogonality, while using
tables to facilitate the readability of condi-
tions associated with transitions.

RSML specifications generally consist
of state diagrams with unlabeled transi-
tions. Transitions are not labeled in order
to increase the readability of a state dia-
gram when enabling conditions of transi-
tions are complex. Instead of using labels,

MON

TUPTUOTUPNI

CON

OUTIN

REQ

SOFT

NAT

Figure 3: Four-Variable Model [14]

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 4: StP SE State Transition Table

22 CROSSTALK The Journal of Defense Software Engineering March 2008

properties of transitions are defined sepa-
rately from the diagrams in transition def-
initions. A transition definition contains
the source and destination of the transi-
tion, the state machine where the transi-
tion is located, the triggering event, the
guarding condition, and the output action.
The guarding condition of a transition is
defined in terms of AND/OR tables. A
sample AND/OR table can be seen in
Table 9, which describes that the associat-
ed transition is enabled (after the trigger-
ing event has occurred) when Expression1 is
true AND Expression2 is false at the same
time, OR Expression3 is found to be true.
The period denotes that the truth value of
the expression is irrelevant for the current
evaluation.

The final RSML specification can
then be checked for consistency and
completeness. In addition, techniques

have been developed that allow the analy-
sis of RSML specifications using theorem
proving and model checking techniques
[15]. As such, the correctness of an
RSML specification can be rigorously
established. Similar to SCR, tools sup-
porting the simulation of RSML specifi-
cations also exist.

Conclusions
Due to advanced syntactical and semanti-
cal features, Harel statecharts and UML
state machine diagrams are better suited
than the basic state transition diagram
notation to handle complex systems.
Similarly, the five presented approaches
use advanced features that make them
better suited for complex systems than
basic state transition tables. Analysts or
developers that need to determine which
approach to use in their development
processes should consider several factors.
If the main goal is to facilitate the imple-
mentation phase and reduce coding
efforts, then the VFSMs and StP
approaches seem preferable, since they
offer commercially available tool support
that allows executing or generating code
from the specifications.

However, if the focus is the formal

analysis of the system specification for
various completeness and correctness
properties, Parnas Tables, SCR, and
RSML are better suited. Since Parnas
Tables do not offer tool support and
require the user to understand the syntax
and semantics of each possible table type,
they can only be recommended to devel-
opers with a solid understanding of for-
mal methods that do not need automated
support for formal analysis. In contrast to
Parnas Tables, SCR and RSML offer
mature tool support for V&V. When
deciding between SCR and RSML, an
important factor may be the availability of
a graphical representation. While SCR is
purely tabular, RSML uses the tabular rep-
resentation only for capturing the guard-
ing conditions of transitions, while states
and unlabeled transitions are captured in
terms of diagrams. We believe that such a
combination of diagrammatic and tabular
views combines the specific advantages
each of these views offer. In addition to
combining graphical and tabular views,
RSML also supports the concepts of nest-
ing and orthogonality of Harel statecharts.
These concepts have shown to be effec-
tive means to reduce the perceived com-
plexity of models. Dutertre and Stavridou
have examined the use of SCR and RSML
for an avionic storage management system
specification and concluded that RSML
specifications are commonly easier to
understand than SCR specifications due to
these structuring features [16].

In conclusion, we believe that while
tabular notations for state machines are
not a silver bullet solution, they may greatly
facilitate the specification and analysis of
systems in specific domains. Tabular nota-
tions seem to be explicitly useful for sys-
tems with a large number of transitions
between states or rather complex enabling
conditions of transitions. In order to
retain the advantage of having a graphical
view, the presented VFSM, StP SE, and
RSML approaches use tables and dia-
grams. As such, they attempt to combine
the complementary advantages of dia-
grammatic and tabular notations. In addi-
tion, if the system under design is rather
complex (i.e., having a large number of
states and transitions), notations support-
ing nesting and orthogonality may provide
a significant reduction in specification
complexity. The mature V&V tool sup-
port offered by some of the presented
approaches also offers significant advan-
tages over specifications using Excel
tables or proprietary databases, where
often the only available means of analysis
is visual inspection.u

Event
State

open_door close_door lock unlock push_in

Opened -
/Closed,
Unlocked

- - -

Closed,
Unlocked

/Opened -
/Closed,
Locked

-
sound_alarm/
Broken

Closed,
Locked

- - -
/Closed,
Unlocked

sound_alarm/
Broken

Broken - - - - -

State name Condition(s) Action(s)

Entry action Output1

Exit action Output2

Condition1 Output3

State1

… …
Internal transitions

State2 Condition2 Output4

… …

External
transitions

Event
State

Event1 Event2 Event3

State1 Action1

State2

Action3

State1

State2 Action2

State1

Current State Event Action Next State

State1 Event1 Action1 State2

State1 Event3 Action3 State1

State2 Event2 Action2 State1

Decision1 Decision2 Decision3

A A1 A2 A3

B B1 B2 B3

1

Table 5: Parnas Decision Table

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 6: SCR Condition Table for Variable Var3

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 7: SCR Event Table for Variable Var4

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 8: SCR Mode Transition Table for Mode Class MC1

Mode Class
MC1

Conditions

M1, M2 var1 < var2 var1 = var2 var1 > var2

var3 greater equal less

Mode Class
MC1

Events

M1, M2 @T(var3 = equal) @T(var3 = greater) OR

@T(var3 = less)

var4 true false

Old Mode Event New Mode

M1 @T(var4) M2

M2 @F(var4) M1

OR

Expression1 T

Expression2 F

A

N

D
Expression3 T

Table 9: RSML AND/OR Table

The Beginning

Tabular Notations for State Machine-Based Specifications

March 2008 www.stsc.hill.af.mil 23

Notes
1. Non-functional aspects, such as per-

formance and reliability, are usually
captured by different means.

2. For the remainder of this article, we
assume that the system being specified
has a finite set of states and we use the
terms finite state machine and state
machine interchangeably.

References
1. Harel, D. “Statecharts: A Visual

Formalism for Complex Systems.”
Science of Computer Programming
8.3 (1987).

2. Object Management Group. “UML
2.0 Superstructure Specification.”
2004 <www.omg.org/cgi-bin/doc?
formal/05-07-04>.

3. Heitmeyer, D. “Tools for Constructing
Requirements Specifications: The SCR
Toolset at the Age of Ten.”
International Journal of Computer
Systems Science and Engineering 20.1
(2005) <http://chacs.nrl.navy.mil/
p u b l i c a t i o n s / C H AC S / 2 0 0 5 /
2005heitmeyer-finalJCSSE.pdf>.

4. National Institute of Standards and
Technology (NIST). “Finite State
Machine.” Dictionary of Algorithms
and Data Structures. NIST 2006
<www.nist.gov/dads/HTML/finite
StateMachine.html>.

5. Hopcroft, J., and J.D. Ullman. Intro-
duction to Automata Theory, Lan-
guage, and Computation. Reading,
MA: Addison-Wesley, 1979.

6. Crane, M., and J. Dingel. “UML vs.
Classical vs. Rhapsody Statecharts:
Not All Models are Created Equal.”
Lecture Notes in Computer Science
2005 <www.cs.queensu.ca/~stl/papers/
MoDELS2005.pdf>.

7. Cruz-Lemus, J.A., M. Genero, M.
Esperanza Manso, and M. Piattini.
“Evaluating the Effect of Composite
States on the Understandability of
UML Statechart Diagrams.” Lecture
Notes in Computer Science 3713
(2005) <www.giro.infor.uva.es/Publi
cations/2005/CGMP05/CruzLemus
GeneroMansoPiattini-Models05.pdf>.

8. Wagner, F. VFSM Executable Speci-
fication. Proc. of the International
Conference on Computer Systems and
Software Engineering. The Hague,
Netherlands, 1992 <www.stateworks.
com/active/download/wagf92-soft
ware-engineer ing.pdf>.

9. Aonix. “Software Through Pictures.”
2006 <www.aonix.com/stp.html>.

10. Parnas, D.L. “Tabular Representation
of Relations.” CRL Report 260.
Ontario, Canada: McMaster University,
1992.

11. Leveson, N., M.P. Heimdahl, H.
Hildreth, and J. Reese. “Requirements

Specification for Process-Control
Systems.” IEEE Transactions on
Software Engineering 20.9 (1994)
<sunnyday.mit.edu/papers/tcas-tse.
pdf>.

12. Wagner, F., and P. Wolstenholme.
“Modeling and Building Reliable, Re-
Useable Software.” Workshop on
Model-Based Development of Com-
puter Based Systems. Huntsville, AL,
2003 <www.stateworks.com/active/
download/wagf03-2-modeling-reli
able-software.pdf>.

13. StateWORKS Software. “State-
WORKS Studio.” 2006 <www.state
works.com>.

14. Parnas, D.L., and J. Madey. “Functional
Documentation for Computer Sys-
tems Engineering.” Science of Com-
puter Programming 25.1 (1995).

15. Choi, Y., and M.P. Heimdahl. “Model
Checking RSML-e Requirements.”
Proc. of the 7th IEEE international
Symposium on High Assurance
Systems Engineering (HASE ’02).
2002 <www.umsec.umn.edu/files/
47.73.model-checking-rsml.pdf>.

16. Dutertre, B., and V. Stavridou.
“Avionics Systems Requirements: A
Comparison of RSML and SCR.”
Proc. of the 16th International System
Safety Conference, Seattle, WA, 2002
<www.csl.sri.com/papers/issc98/issc
98.ps>.

About the Authors

Markus Herrmanns-
dörfer is a Ph.D. student
at the Chair of Software
and System Engineering
at Technische Universität
Munchen, Germany.

During his master-level studies, he
worked on the subject of this publica-
tion as an intern at Siemens Corporate
Research in Princeton, New Jersey. His
current focus is on metamodeling, espe-
cially on the problem of metamodel evo-
lution.

Technische Universität München
Institut für Informatik
Boltzmannstr. 3
85748 Garching bei München
Germany
Phone: +49 (89) 289-17336
E-mail: herrmama@in.tum.de

Sascha Konrad, Ph.D.,
is a consultant at Siemens
Corporate Research. He
received his intermediate
diploma from the Uni-
versity of Kaiserslautern,

Germany, and his master’s and doctorate
degrees in computer science and engi-
neering from Michigan State University.
Konrad’s research interests include
requirements engineering and automated
analysis of software specifications,
including software patterns, the Unified
Modeling Language, agile and model-dri-
ven software development, formal meth-
ods and computer-aided verification, and
distributed and embedded systems.

Siemens Corporate Research
755 College RD East
Princeton, NJ 08540
Phone: (609) 734-6500
E-mail: sascha.konrad

@siemens.com

Brian Berenbach is the
technical program man-
ager for requirements
engineering at Siemens
Corporate Research. He
has been working in the

field of requirements engineering for
more than 15 years, first as a consultant,
and then as a senior member of the
technical staff at Siemens. Recently, his
program has been involved with require-
ments definition for such diverse prod-
ucts as medical systems, baggage han-
dling, mail sorting, automated warehous-
es, and embedded automotive systems.

Siemens Corporate Research
755 College RD East
Princeton, NJ 08540
Phone: (609) 734-6500
E-mail: brian.berenbach

@siemens.com

Tactical information management sys-
tems increasingly run in net-centric

environments characterized by thousands
of platforms, sensors, decision nodes, and
computers connected together to
exchange information, support sense-
making, enable collaborative decision
making, and effect changes in the physical
environment. For example, the Global
Information Grid (GIG) is an ambitious
net-centric environment being designed to
ensure that different services and coalition
partners, as well as individuals participat-
ing to specific missions, can collaborate
effectively and deliver appropriate fire-
power, information, or other essential
assets to warfighters in a timely, depend-
able, and secure manner [1]. Achieving
this vision requires the following capabili-
ties from the distributed middleware soft-
ware:
• Shared operational picture. A key

requirement for mission-critical net-
centric systems is the ability to share
an operational picture with planners,
warfighters, and operators in real-time.

• Ensure the right data gets to the
right place at the right time by satis-
fying end-to-end QoS requirements,
such as latency, jitter, throughput,
dependability, and scalability.

• Interoperability and portability in
heterogeneous environments. Since
net-centric systems are faced with
unprecedented challenges in terms of
platform and network heterogeneity,
they are necessary.

• Support for dynamic coalitions. In
many net-centric tactical information
management systems, dynamically
formed coalition of nodes will need to
share a common operational picture
and exchange data seamlessly.

Prior middleware technologies (such as

the Common Object Request Broker
Architecture [CORBA] Event Service and
Notification Service, the Java Message
Service [JMS], and various other propri-
etary middleware products) have histori-
cally lacked key architectural and QoS
capabilities, such as dependability, surviv-
ability, scalability, determinism, security,
and confidentiality needed by net-centric
systems for tactical information manage-
ment. To address these limitations – and
to better support tactical information
management in net-centric systems like
the GIG – the OMG has adopted the
DDS specification, which is a standard for
QoS-enabled data-centric pub/sub com-
munication aimed at net-centric tactical
information management systems [2].
DDS is used in a wide range of military
and commercial systems including naval
combat management systems, commercial
air traffic control, transportation manage-
ment, automated stock trading systems,
and semiconductor fabrication devices.

The remainder of this article presents
an overview of DDS that is geared to
software architects. We also discuss the
DDS QoS policies that are the most rele-
vant for net-centric tactical information
management systems. Finally, we explain
how DDS has been applied in practice to
address key challenges of developing and
operating distributed software in current
and planned net-centric tactical informa-
tion management systems.

Overview of DDS
DDS provides the following capabilities
for net-centric tactical information sys-
tems:
• Universal access to information

from a wide variety of sources that run
over potentially heterogeneous hard-
ware/software platforms and net-

works.
• An orchestrated information bus

that aggregates, filters, and prioritizes
the delivery of this information to
work effectively under the restrictions
of transient and enduring resource
constraints.

• Continuous adaptation to changes
in the operating environment, such as
dynamic network topologies, publisher
and subscriber membership changes,
and intermittent connectivity.

• Standard QoS policies and mecha-
nisms that enable applications and
administrators to customize the way
information is delivered, received, and
processed in the appropriate form and
level of detail to users at multiple lev-
els in net-centric systems.
This section describes the key capabil-

ities and entities in DDS and shows how
its QoS policies can be used to specify and
enforce performance-related requirements
of net-centric tactical information man-
agement systems. Figure 1 shows the vari-
ous profiles and layers in the DDS stan-
dard. The lower layer defines a Data-
Centric Publish Subscribe (DCPS) plat-
form, whose goal is to provide efficient,
scalable, predictable, and resource-aware
data distribution. The higher layer is the
Data Local Reconstruction Layer (DLRL),
which is an optional interface that pro-
vides an object-oriented facáde atop the
DCPS. The DLRL can be used to map
topics onto object fields and defines navi-
gable associations between objects.

A separate specification, called the
Real-Time Publish/Subscribe (RTPS)
DDS interoperability wire protocol,
defines the standard network protocol
used to exchange data between publishers
and subscribers that use different imple-
mentations of DDS [3]. The remainder of

Addressing the Challenges of Tactical Information
Management in Net-Centric Systems With DDS

Recent trends in net-centric systems motivate the development of tactical information management capabilities that ensure the
right information is delivered to the right place at the right time to satisfy quality of service (QoS) requirements in heteroge-
neous environments. This article presents an architectural overview of the Object Management Group’s (OMG) Data
Distribution Service (DDS), which is a standards-based QoS-enabled data-centric middleware platform that enables applica-
tions to communicate by publishing information they have and subscribing to information they need in a timely manner. DDS
is an important distributed software technology for mission-critical Department of Defense (DoD) net-centric systems because
it supports the following: (1) location independence, via anonymous publish/subscribe (pub/sub) protocols that enable commu-
nication between collocated or remote publishers and subscribers, (2) scalability, by supporting large numbers of topics, data
readers, and data writers and platform portability, and (3) interoperability, via standard interfaces and transport protocols.

Dr. Douglas C. Schmidt, Dr. Angelo Corsaro, and Hans van’t Hag
PrismTech Corporation

24 CROSSTALK The Journal of Defense Software Engineering March 2008

Software Engineering Technology

March 2008 www.stsc.hill.af.mil 25

this section describes the conceptual
model of DDS and explains the QoS poli-
cies that are most relevant for net-centric
tactical information management systems.

DDS Conceptual Model
Domains and Partitions
DDS applications send and receive data
within a domain. Domains can be divided
into partitions that allow the separation
and protection of different data flows.
Although DDS entities can belong to dif-
ferent domains, only participants within
the same domain can communicate, which
helps isolate and optimize communication
within communities that share common
interests. For example, each communica-
tion layer within the GIG could be associ-
ated with a DDS domain and further sub-
divided into partitions. This approach iso-
lates domain participants across layers,
which enables effective use of resources
and helps enforce security and confiden-
tiality policies.

Global Data Space
DDS provides a strongly typed global data
space within each domain in which appli-
cations produce and consume the dynam-
ically changing portions of a shared infor-
mation model, as shown in Figure 2. DDS’
information model capabilities are similar
to those of relational databases, except
that DDS’ global data space is completely
distributed, QoS-aware, and allows anony-
mous and asynchronous sharing of a
common information model. The DDS
information model is the only knowledge
publishers and subscribers need to com-
municate, i.e., they need not be aware of
each other nor be concerned with low-
level network programming details, such
as Internet protocol addresses, port num-
bers, remote object references, or service
names. By allowing data to flow where and
when needed, DDS’s global data space
enables the sharing of tactical information
and situational awareness information
needed to implement net-centric tactical
information management systems.

Topic
A DDS topic is an association between a
data type, a set of QoS, and a unique
name, as shown in Figure 3 (see page 26).
A topic is also the unit of information
contained in DDS’ global data space and
is used by applications to define their
information model and associate QoS
policies with it. DDS applications in net-
centric systems define their information
model by identifying topics that are rele-
vant for solving their requirements and
organizing them into either relational or

object-oriented models. DDS thus allows
the expression of the system information
model as either a 1) topic relational model,
which can be thought of as an extension
of the familiar entity relationship diagrams
used in data bases, decorated with QoS, or
2) an object-oriented model, which can
also be synthesized as an object-oriented
view of the relational model.

The DCPS layer provides support for
relational modeling, while the DLRL
extends the DCPS with an object-oriented
facade, so that applications can either
completely ignore the DCPS relational
models or build an object model atop the
DLRL. Data associated with DDS topics
are expressed using types defined by the
standard OMG Interface Definition
Language (IDL), which simplifies the
inter-working between DDS and CORBA.
Relationships between topics can be cap-
tured via keys that can be used to distin-
guish between different instances of the
same topic.

In net-centric tactical information sys-
tems, an information model will be associ-
ated with every layer in which DDS-based
data exchange occurs. This information
model, which can comply with DoD or
North American Trade Organization stan-
dards, is the lingua franca used by the dif-
ferent applications in coalitions to
exchange information and seamlessly
interoperate. Likewise, the QoS policies
decorating the information model deter-
mine how the data is disseminated, per-
sisted, and received in the global data
space.

Publishers and Subscribers
In net-centric tactical information man-
agement systems, publishers and sub-
scribers correspond to a range of domain
participants such as embedded devices,
Unmanned Air Vehicles (UAVs), soldiers’
equipment, as well as planning and simula-
tion services in operations centers. DDS
applications use data writers to publish

Data Centric Publish Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

A

B

CD

E

F

m

J

K

TopicType QoS

Name

Figure 1: Profiles and Layers in the DDS Standard

Data Centric Publish Subscribe (DCPS)

Data Local Reconstruction Layer (DLRL)

A

B

CD

E

F

m

J

K

TopicType QoS

Name

Figure 2: DDS Global Data Space in a Domain

Addressing the Challenges of Tactical Information Management in Net-Centric Systems With DDS

data values to the global data space of a
domain and data readers to receive data. A
publisher is a factory that creates and
manages a group of data writers with sim-
ilar behavior or QoS policies, as shown in
Figure 4. A subscriber is a factory that cre-
ates and manages data readers, as shown
in Figure 4.

Publishers can declare their intent to
produce data on particular topics with
associated QoS, and they distribute the
data on those topics to the global data
space. Subscribers receive topic data in the
global data space that match their sub-
scriptions (the rules that define what rep-
resents a matching subscription are
described below). QoS policies allow pub-
lishers and subscribers to define, first,
their local behavior, such as the number of
historical data samples they require and
the maximum update-rate at which they
want to receive data, and, second, how
data should be treated once in transit with
respect to reliability, urgency, importance,
and durability. Topics can also be annotat-
ed with these QoS policies to drive the
behavior of the data-distribution. The
QoS policies of pre-defined topics serve
as defaults for publishers and subscribers
and can therefore ensure consistency
between requested and offered QoS.

Subscriptions and Matching
A subscription is an operation that associ-
ates a subscriber to its matching publish-
ers, as shown in the center of Figure 4. In
addition to the topic-based subscriptions

described, DDS also supports content-based
subscription, in which a subset of the stan-
dard Structured Query Language (SQL) is
used to specify subscription filters. In
DDS a matching subscription must match
the following two types of a topic’s prop-
erties: (1) its features, such as its type,
name, key, and content; (2) its QoS poli-
cies, which are described in the QoS Policies
section.

The matching process for QoS uses a
requested/offered (RxO) model shown in
Table 1, where the requested QoS must be
less than or equal to the offered QoS. For
example, subscribers requesting reliable
data delivery cannot communicate with
publishers that only distribute data using
best effort delivery. Likewise, subscribers
cannot request a topic update whose dead-
line is smaller than that declared by any
publishers.

The subscription matching mechanism
provided by DDS enforces a powerful
form of design by contract [4], where QoS is
used together with type information to
decide whether publishers and subscribers
can communicate. This extended form of
design by contract helps ensure that net-
centric systems will operate as intended,
both from functional and QoS perspec-
tives. These assurances are essential in the
development, deployment, and operation
of mission-critical net-centric tactical
information management systems.

Discovery
Another key feature of DDS is that all
information needed to establish commu-
nication can be discovered automatically,
in a completely distributed manner.
Applications dynamically declare their
intent to become publishers and/or sub-
scribers of one or more topics to the DDS
middleware, which uses this information
to establish the proper communication
paths between discovered entities. This

capability supports dynamic scenarios
common in net-centric tactical informa-
tion management where cooperating
domain participants join and leave
throughout system operation.

QoS Policies
DDS is designed for mission-critical net-
centric systems where the right answer
delivered too late becomes the wrong
answer. To meet timing requirements it is
essential that the middleware controls and
optimizes the use of resources, such as net-
work bandwidth, memory, and CPU time.
Table 1 shows the rich set of QoS policies
that DDS provides to control and limit
topic (T), data reader (DR), data writer
(DW), publisher (P), and subscriber (S)
resources and topic QoS properties, such
as persistence, reliability, and timeliness [2].
Below we discuss the DDS QoS policies
that are the most relevant for net-centric
tactical information management systems.

Data Availability
DDS provides the following QoS policies
that control the availability of data to
domain participants:
• The Durability QoS policy controls

the lifetime of the data written to the
global data space in a domain.
Supported durability levels include the
following: (1) volatile, which specifies
that once data is published it is not
maintained by DDS for delivery to late
joining applications; (2) transient local,
which specifies that publishers store
data locally so that late joining sub-
scribers get the last published item if a
publisher is still alive; (3) transient,
which ensures that the global data
space maintains the information out-
side the local scope of any publishers
for use by late joining subscribers; and
(4) persistent, which ensures that the
global data space stores the informa-
tion persistently so it is available to late
joiners even after the shutdown and
restart of the system. Durability is
achieved by relying on a durability ser-
vice whose properties are configured
by means of the DURABILITY_SER-
VICE QoS.

• The LIFESPAN QoS policy controls
the interval of time during which a
data sample is valid. The default value
is infinite, with alternative values being
the time-span for which the data can
be considered valid.

• The HISTORY QoS policy controls
the number of data samples (i.e., sub-
sequent writes of the same topic) that
must be stored for readers or writers.
Possible values are the last sample, the

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering March 2008

A

B

CD

E

F

m

J

K

TopicType QoS

Name

Figure 3: DDS Topic

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

QoS Policy Applicability RxO Modifiable

DURABILITY

DURABILITY
SERVICE

LIFESPAN

HISTORY

PRESENTATION

RELIABILITY

PARTITION

DESTINATION
ORDER

OWNERSHIP

OWNERSHIP
STRENGTH

DEADLINE

LATENCY
BUDGET

TRANSPORT
PRIORITY

TIME BASED
FILTER

RESOURCE
LIMITS

USER_DATA

TOPIC_DATA

GROUP_DATA

T, DR, DW Y N

Data
Availability

T, DW N N

T, DW - Y

T, DR, DW N N

P, S Y N

Data Delivery

T, DR, DW Y N

P, S N Y

T, DR, DW Y N

T, DR, DW Y N

DW - Y

T, DR, DW Y Y

Data
Timeliness

T, DR, DW Y Y

T, DW - Y

DR - Y

Resources
T, DR, DW N N

DP, DR, DW N Y

ConfigurationT N Y

P, S N Y

Figure 4: DDS Publisher/Writer Subscriber/Reader and Subscription/QoS Matching

Addressing the Challenges of Tactical Information Management in Net-Centric Systems With DDS

March 2008 www.stsc.hill.af.mil 27

last n samples, or all samples.
These QoS policies provide the DDS

global data space with the ability to coop-
erate in highly dynamic environments
characterized by continuous joining and
leaving of publisher/subscribers. This
capability makes it possible for net-centric
tactical information management systems
to share a common operational picture
regardless of the dynamism that charac-
terizes portions of the systems, such as
coalitions of soldiers collaborating in
urban environments or coordinated UAVs
in support of tactical operations.

Data Delivery
DDS provides the following QoS policies
that control how data is delivered and
which publishers are allowed to write a
specific topic:
• The PRESENTATION QoS policy

gives control on how changes to the
information model are presented to
subscribers. This QoS gives control on
the ordering as well as the coherency
of data updates. The scope at which it
is applied is defined by the access
scope, which can be one of
INSTANCE, TOPIC, or GROUP
level.

• The RELIABILITY QoS policy con-
trols the level of reliability associated
with data diffusion. Possible choices
are RELIABLE and BEST_EFFORT
distribution.

• The PARTITION QoS policy gives
control over the association between
DDS partitions (represented by a
string name) and a specific instance of
a publisher/subscriber.

• The DESTINATION_ORDER QoS
policy controls the order of changes
made by publishers to some instance
of a given topic. DDS allows the
ordering of different changes accord-
ing to source or destination time-
stamps.

• The OWNERSHIP QoS policy con-
trols which writer owns the write-
access to a topic when there are multi-
ple writers and ownership is EXCLU-
SIVE. Only the writer with the highest
OWNERSHIP_STRENGTH can
publish the data. If the OWNERSHIP
QoS policy value is shared, multiple
writers can concurrently update a
topic. OWNERSHIP thus helps to
manage replicated publishers of the
same data.
These QoS policies control the relia-

bility and availability of the data, thus
allowing the delivery of the right data to
the right place at the right time. More elab-
orate ways of selecting the right data are

offered by the DDS content-awareness
profile that allows applications to select
information of interest based upon their
content.

Data Timeliness
DDS provides the following QoS policies
that control the timeliness properties of
distributed data:
• The DEADLINE QoS policy allows

applications to define the maximum
inter-arrival time for data. DDS can be
configured to automatically notify
applications when deadlines are
missed.

• The LATENCY_BUDGET QoS pol-
icy provides a means for applications
to inform DDS of the urgency associ-
ated with transmitted data. The latency
budget specifies the time period with-
in which DDS must distribute the
information. This time period starts
from the moment the data is written
by a publisher until it is available in the
subscriber’s data-cache ready for use
by reader(s).

• The TRANSPORT_PRIORITY QoS
policy allows applications to control
the importance associated with a topic

or with a topic instance, thus allowing
a DDS implementation to prioritize
more important data relative to less
important data.
These QoS policies make it possible to

ensure that tactical information needed to
reconstruct the shared operational picture
is delivered in a timely manner.

Resources
DDS defines the following QoS policies
to control the network and computing
resources that are essential to meet data
dissemination requirements:
• The TIME_BASED_FILTER QoS

policy allows applications to specify
the minimum inter-arrival time
between data samples, thereby
expressing their capability to consume
information at a maximum rate.
Samples that are produced at a faster
pace are not delivered. This policy
helps a DDS implementation optimize
network bandwidth, memory, and pro-
cessing power for subscribers that are
connected over limited bandwidth net-
works or which have limited comput-
ing capabilities.

• The RESOURCE_LIMITS QoS poli-

Publisher

DataWriter

Topic

Type

QoS

Name

writes

QoS

QoS

DataWriter

Topic

Typewrites

Subscriber

DataReaderreads

QoS

DataReaderreads

...

QoS

Name

QoS

QoS QoS

QoS matching

QoS matching

......

QoS Policy Applicability RxO Modifiable

DURABILITY

DURABILITY
SERVICE

LIFESPAN

HISTORY

PRESENTATION

RELIABILITY

PARTITION

DESTINATION
ORDER

OWNERSHIP

OWNERSHIP
STRENGTH

DEADLINE

LATENCY
BUDGET

TRANSPORT
PRIORITY

TIME BASED
FILTER

RESOURCE
LIMITS

USER_DATA

TOPIC_DATA

GROUP_DATA

T, DR, DW Y N

Data
Availability

T, DW N N

T, DW - Y

T, DR, DW N N

P, S Y N

Data Delivery

T, DR, DW Y N

P, S N Y

T, DR, DW Y N

T, DR, DW Y N

DW - Y

T, DR, DW Y Y

Data
Timeliness

T, DR, DW Y Y

T, DW - Y

DR - Y

Resources
T, DR, DW N N

DP, DR, DW N Y

ConfigurationT N Y

P, S N Y

Table 1: Key QoS Policies for Net-Centric Systems

cy allows applications to control the
amount of message buffering per-
formed by a DDS implementation.
DDS’s QoS policies support the vari-

ous elements and operating scenarios that
constitute net-centric tactical information
management. By controlling these QoS
policies it is possible to scale DDS from
low-end embedded systems connected
with narrow and noisy radio links, to high-
end servers connected to high-speed
fiber-optic networks.

Configuration
The QoS policies described above provide
control over the most important aspects
of data delivery, availability, timeliness,
and resource usage. In addition, DDS also
supports the definition and distribution of
user specified bootstrapping information
via the following QoS policies:
• The USER DATA QoS policy allows

applications to associate a sequence of
octets to domain participant data read-
ers and data writers. This data is then
distributed by means of the DCPS
participant built-in topic. This QoS
policy is commonly used to distribute
security credentials.

• The TOPIC_DATA QoS policy
allows applications to associate a
sequence of octets with a topic. This
bootstrapping information is distrib-
uted by means of the DCPS Topic
built-in topic. A common use of this
QoS policy is to extend topics with
additional information, or meta-infor-
mation, such as eXtensible Markup
Language schemas.

• The GROUP_DATA QoS policy
allows applications to associate a
sequence of octets with publishers and
subscribers. This bootstrapping infor-
mation is distributed by means of the
DCPS subscription,and DCPS publi-
cation built-in topics, respectively. A
typical use of this information is to
allow additional application control
over subscriptions matching.

DDS Success Stories
Although DDS is a relatively new standard
(adopted by the OMG in 2004), it has
been adopted quickly due to its ability to
address key requirements of data distribu-
tion in net-centric systems, as well as the
maturity and quality of available imple-
mentations, which are based on decades of
experience developing data-centric mid-
dleware for mission-critical systems.
Moreover, DDS has been mandated by
the U.S. Navy’s Open Architecture
Computing Environment as the standard
publish/subscribe technology to use in

next-generation combat management sys-
tems, and Defense Information Systems
Agency as the standard technology for
publish/subscribe to be used in all new or
upgraded systems [5, 6]. Several major
defense programs, such as the U.S. Navy’s
DDG-1000 land attack destroyer, U.S.
Army’s Future Combat Systems (FCS),
and the Thales Tactical Information And
Command System Operating System
(TACTICOS), also adopted DDS even
before it was mandated, underscoring
DDS’ ability to address the data distribu-
tion challenges of next generation net-
centric defense systems.

For example, the TACTICOS combat
management system developed by Thales
Naval Netherlands is based on an imple-
mentation of DDS that allows them to
achieve very good scalability, from small

ships to aircraft carrier grade, as well as
high performance, availability, and deter-
minism even under temporary overload
conditions [7, 8]. TACTICOS is currently
in use in 15 navies worldwide serving 20
ships-classes ranging from small patrol
boats up to large frigates. The utilization
of DDS is instrumental in its success
since it provides both the scalability to
support thousands of applications run-
ning on more than 150 distributed com-
puters on a frigate size system. Another
key feature of DDS is its battle-damage
resistance, meaning that software can be
dynamically re-allocated to the remaining
computer pool in case of an error on a
specific computer. The DDS Persistence
Profile support is instrumental in this
dynamic reallocation since it allows appli-
cations to store their internal state into the
DDS middleware, which manages this
state in a distributed and fault-tolerant way
so that restarted applications can continue
what they were doing before they crashed.

The DDS implementation used on
TACTICOS supports a data-centric
approach where at the start of the system
design, the information model can be cap-
tured, annotated with proper QoS poli-
cies, and then shared between multiple
parties. This federated architecture is com-
mon in existing and planned coalition-based
developments where multiple parties
jointly implement the overall combat sys-
tem. DDS provides the fault-tolerant
information backbone onto which all
these applications are deployed and is thus
responsible for providing each application
with the right information at the right
time.

Along with the rapid adoption of
DDS in the defense domain, its use is also
steadily growing in other domains, such as
transportation, telecommunications, and
finance. For example, in the context of
Air Traffic Control and Management,
DDS has been selected as the
publish/subscribe middleware for distrib-
uting flight data plans in CoFlight [9],
which is the next generation European
Flight Data Processor. In general, DDS is
an appropriate middleware technology for
application domains that require rich sup-
port for QoS policies and high-perfor-
mance and dependability standards-based,
commercial-off-the-shelf implementa-
tions.

Concluding Remarks
DDS is a standards-based QoS-enabled
data-centric publish/subscribe middle-
ware that provides a feature rich data-cen-
tric real-time platform to support the
needs of current and planned net-centric
tactical information management systems.
Its powerful set of QoS policies, together
with its scalable architecture, makes it an
effective and mature choice for solving the
data distribution and information manage-
ment problems net-centric systems [10].
Next, we summarize how DDS addresses
the key challenges outlined in the intro-
duction in a standard and interoperable
manner:
• Shared operational picture. DDS

provides effective support for these
types of applications via its QoS poli-
cies for defining the scope, content,
and QoS of the data model that under-
lies the operational picture.

• The right data at the right time at
the right place via DDS QoS policies
that enable a fine-grained control over
information delivery, such as the abili-
ty to control many aspects of data dis-
semination to ensure timely delivery
and optimal resource usage.

• Heterogeneous environment. By

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering March 2008

“DDS provides the
fault-tolerant information

backbone onto which
all these applications are

deployed and is thus
responsible for providing
each application with
the right information
at the right time.”

Addressing the Challenges of Tactical Information Management in Net-Centric Systems With DDS

March 2008 www.stsc.hill.af.mil 29

About the Authors

Douglas C. Schmidt,
Ph.D., is a professor of
computer science at
Vanderbilt University
and is the chief technical
officer of PrismTech.

His expertise focuses on distributed
computing middleware, object-oriented
patterns and frameworks, and distrib-
uted real-time and embedded systems.
He has authored nine books and more
than 350 papers in top technical journals,
conferences, and books that cover high-
performance communication software
systems, real-time distributed comput-
ing, and object-oriented patterns for
concurrent and distributed systems.

PrismTech Corporation
6 Lincoln Knoll LN
STE 100
Burlington, MA 01803
Phone: (781) 270-1177
Fax: (781) 238-1700
E-mail: doug.schmidt

@prismtech.com

Angelo Corsaro, Ph.D.,
is the OpenSplice DDS
product marketing man-
ager at PrismTech and
co-chairs the OMG DDS
Special Interest Group

and the Real-Time Embedded and
Specialized Services task force. He is
well-known in the distributed real-time
and embedded systems middleware
community and has a wealth of experi-
ence in hard real-time embedded sys-
tems, large-scale, and very large-scale
distributed systems such as defense,
aerospace, homeland security and trans-
portation systems.

PrismTech Corporation
6 Lincoln Knoll LN
STE 100
Burlington, MA 01803
Phone: (781) 270-1177
Fax: (781) 238-1700
E-mail: angelo.corsaro

@prismtech.com

Hans Van’t Hag is the
OpenSplice DDS prod-
uct manager, at
PrismTech. He has
extensive experience in
applying an information

approach towards mission-critical and
real-time net-centric systems. Hag is a
contributor to the OMG DDS specifica-
tion and has presented numerous papers
on DDS and publish/subscribe middle-
ware technologies. Prior to joining
PrismTech, he worked at Thales Naval
Netherlands (TNN) where he was
responsible for the development of the
data-centric real-time middleware as
applied in TNN’s combat system in ser-
vice with 15 navies worldwide.

PrismTech Corporation
6 Lincoln Knoll LN STE 100
Burlington, MA 01803
Phone: (781) 270-1177
Fax: (781) 238-1700
E-mail: hans.vanthag

@prismtech.com

providing standard QoS policies that
control the bandwidth used for pro-
viding data to interested parties, DDS
runs in heterogeneous platforms while
providing different elements with a
common operational picture.

• Dynamic coalitions. The highly
dynamic nature of DDS, such as its
support for dynamic discovery, pro-
vides an effective platform for sup-
porting ad hoc interactions.
DDS continues to evolve to meet new

operational and technical challenges of
net-centric tactical information manage-
ment systems. Three types of extensions
are currently being pursued for DDS by
the OMG. The first involves adding new
platform-specific models that fully lever-
age programming language features, such
as standard C++ containers. The second
extension deals with extensible topics that
enable incremental system updates by
ensuring that changes in the data model
do not break interoperability. The final set
of extensions focus on network data rep-
resentation and the syntax used to define
topics. For example, upcoming versions of
the DDS standard will likely allow the def-
inition of topics using XML, as well as the
use of XML or Java Script Object
Notation as the network data representa-
tion. DDS security has not yet been stan-

dardized. The OMG will be addressing
this area of standardization starting in the
spring of 2008.

With multiple COTS and open-source
implementations and a solid track record
of success in mission-critical military and
commercial projects, DDS has a bright
future as the standards-based middleware
of choice for net-centric tactical informa-
tion systems. More information on DDS
and its application in practice are available
in online forums [11, 12] where experts
discuss advanced features of the DDS
standard and new directions for the tech-
nology, while DDS beginners can learn
from past experiences and ask questions
about patterns and best practices for
applying DDS in their net-centric sys-
tems.u

References
1. “The United States Department of

Defense Quadrennial Defense Review
Report.” Feb. 2006 <www.defense
link.mil/qdr/report/Report20060203.
pdf>.

2. OMG. “Data Distribution Service for
Real-Time Systems Specification.”
<www.omg.org/docs/formal/04-12
-02.pdf>.

3. OMG. “Real-Time Publish Subscribe
Protocol – DDS Interoperability Wire

Protocol Specification.” <www.omg.
org/cgi-bin/apps/doc?ptc/06-08
-02.pdf>.

4. Bertrand, Meyer. Object Oriented
Software Construction. 2nd ed.,
Prentice Hall, 2001.

5. “Open Architecture Computing
Environment.” <www.nswc.navy.mil/
wwwDL/B/OACE>.

6. Defense Systems Information Agency.
“DoD Information Technology
Standards Registry.” <https://disron
line.disa.mil>.

7. THALES. “TACTICOS Combat
Management System, Exploiting the
Full DDS Potential.” <www.omg.
org/docs/dds/06-12-06.pdf.>.

8. “OpenSplice DDS.” <www.prismtech.
com/openplice-dds>.

9. CoFlight eFDP <www.omg.org/docs/
dds/07-07-04.pdf>.

10. Xiong, Ming, et al. “Evaluating
Technologies for Tactical Information
Management in Net-Centric Systems.”
Proceedings of the Defense Transfor-
mation and Net-Centric Systems Con-
ference, Apr. 9-13, 2007, Orlando, FL.

11. OMG DDS SIG Portal <portals.
omg.org/dds>.

12. OMG DDS Forum <www.dds-forum.
org>.

Departments

30 CROSSTALK The Journal of Defense Software Engineering March 2008

BACKTALK

March 2008 www.stsc.hill.af.mil 31

Recently, I had the opportunity to be stuck in an airplane in
Albuquerque, heading towards Atlanta. We boarded the

plane a few minutes late, but managed to pull out of the gate and
head to the runway within 10 minutes of the scheduled time.

Once we got to the runway, we sat. And sat. And sat…
Eventually, the plane engines sped up, and everyone breathed a
sign of relief as the plane departed. Unfortunately, all it did was
move forward a few hundred feet, take a taxiway, and head back
towards the terminal. Passengers were immediately asking
“What’s happening?” The flight attendants never made an
announcement and neither did the flight crew. People started
calling on their cell phones, initializing the frantic can-I-get-
rebooked-on-another-flight-or-airline? calls.

We approached the terminal and stopped short. At that time,
the pilot finally came on the intercom and said, “The tempera-
ture/humidity conditions are marginal, so we’ve decided to de-
ice the plane before takeoff. We’ll be off in 15 minutes, and we’re
predicting that we’ll arrive in Atlanta only 5 to 10 minutes late.
Everybody should have no problem making their connections.”
There were massive sighs of relief as we all smiled and realized
that there were no catastrophic schedule changes in store for us.
Everybody relaxed, except for me – I thought of how this would
be a perfect topic for a BackTalk.

In software development, we also have passengers. We call
them customers. And, just like the passengers on the airplane,
they feel they have a right to know what is happening.

The problem arises when it comes down to How Much Do I
Tell My Customer? At what level do you start sharing (infrequent)
good and (frequent) bad news?

I have consulted on software projects that have ranged from
full and open communication to just keep telling them we are on sched-
ule. And, as expected, these projects have also ranged, in a differ-
ent dimension, from “Wow – delivered on time and on budget!”
to “Well, time to update the old resume.” And in all cases, open
communication made the difference between (on yet another
dimension) “Wow, what a great team of developers!” to “Can
Tony Soprano arrange a hit for me?”

Here’s a secret: All software development projects have a lot of
politics involved. And, to misquote a famous author1, “Politics are
like sausages – it is best not to watch them being made.” Internal
politics make for changes, changes result in bad news, and that
requires communication between developers and customers.

On the developer side, people come and go. Good develop-
ers often leave, retire, get sick, take a better job, burn out, freak
out, sneak out…you get the picture. They hire new personnel,
retrain others from other projects (projects that have had their
budget cut, were cancelled, etc). Critical folks take leave at the
worst time. And every time developer staff changes, productivi-
ty metrics changes. Earned value moves around

On the customer side, requirements change. Frequently. Not
because we didn’t know them, but because of politics. The nine
different stakeholders can’t agree on interfaces. Small issues
become huge (and yet, huge issues seldom become trivial – pity).

And through it all, both sides have to develop a cutoff bar of
how much information is shared with the other side. It’s not about
us vs. them, it’s about politics. It’s about contract issues. It’s about
budgeting. But, underneath it all, it’s about trying to get the project
finished on time, on budget, and with happy end users. Delivering
bad news is never a good thing – but it’s often a necessary thing.

Being a good consultant, I have a workable answer to the
question how much information do I share? Put yourselves in their
shoes, and ask yourself would their job be easier if they knew
more about the politics that I am involved in? Can I tell them
additional information about upcoming events without doing
damage to myself (or my organization)?

You don’t want to be one of the pick-up-the-phone-and-tell-
them-everything kind. You need a filter mechanism to filter out
garbage and a metric to figure out how much to tell them. It
probably requires a centralized communication channel – don’t
undercut the boss by telling the other side things he or she might
not want discussed.

The best advice I have ever seen given to a development team
was “Remember, it’s a marathon, not a sprint2.” In case you don’t
know the origin of the word marathon, it comes from the legend
of Pheidippides, a Greek soldier, who was sent from the town of
Marathon to Athens to announce that the Persians had been
defeated in the Battle of Marathon. It is said that he ran the
entire distance without stopping and burst into the senate with
the words “Masters! Victory is ours!” before collapsing and dying
due to exhaustion.

I don’t think the messenger (or the project) should die.
Marathon was about a victory, not a defeat! When we win the bat-
tle, as we cross the finish line, we might be exhausted in victory,
but it will be because of the words we have said up to that point,
not what we gasp as we finish. Please don’t kill the messenger.

— David A. Cook
dcook@aegistg.com

The AEgis Technologies Group, Inc.

Notes
1. Nobody really knows who said “Laws are like sausages – it is

best not to see them being made.” See <http://en.wiki
quote.org/wiki/Otto_von_Bismarck>. It has been attributed
to Otto von Bismarck, Winston Churchill, Benjamin Disraeli,
Clarence Darrow, Mark Twain, and Kaiser Wilhelm, among
others.

2. Oddly enough, the development team was using the Agile
methodology Scrum, which has periods of development
called “Sprints.” Come on, this is funny! And thanks to Mark
Mitchell for repeating this advice frequently <http://
en.wikipedia.org/wiki/Marathon>.

Marathon or Sprint?

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles for
the BackTalk column. BackTalk articles should provide a
concise, clever, humorous, and insightful perspective on the
software engineering profession or industry or a portion of it.
Your BackTalk article should be entertaining and clever or
original in concept, design, or delivery. The length should not
exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	The Beginning
	NAVAIR’s Coast-to-Coast Support of theE-2C Hawkeye Using Distributed TSP
	Improving Consistency of Use Case Points Estimates
	Good Practices for Developing User Requirements
	Tabular Notations for State Machine-Based Specifications

	Software Engineering Technology
	Addressing the Challenges of Tactical InformationManagement in Net-Centric Systems With DDS

	Coming Events
	SSTC 2008
	BackTalk
	Back Cover

